免责声明此投资者的演讲是由Pilot Energy Limited ABN 86 115 229 984(飞行员或公司)编写的。本演示文稿中使用的任何材料只是试点管理层选择的某些数据的概述和摘要。演示文稿并不声称要包含准投资者在评估可能对飞行员投资的投资所需的所有信息,也没有包含根据《公司法要求》制备的披露文件所要求的所有信息,不应隔离将其用作对飞行员投资的基础。本演讲的接收者必须对飞行员进行独立的调查,考虑和评估。飞行员建议潜在的投资者咨询其专业顾问作为对飞行员的投资被认为是投机性的。
对授粉过程的准确预测是可持续粮食生产和自然生态系统保护的关键挑战。对于许多植物,花粉扩散是由蜜蜂动物的觅食运动介导的。虽然大多数当前的授粉生态模型都采用随机的花粉运动,但对动物行为的研究表明,授粉昆虫,鸟类和蝙蝠如何依赖感官提示,学习和记忆来参观流量,从而产生复杂的运动模式。基于对授粉和运动模型的简要回顾,我们认为我们需要更好地考虑授粉媒介的认知,以改善从各个空间量表中对动物介导的授粉的预测,从单个流动物到植物,植物,栖息地斑块和景观。我们提出了将行为模型整合到授粉模型中的实用路线图,并讨论该合成如何对植物交配模式和拟合度进行修复预测。在动物行为和植物生态学研究之间的这种串扰将为迫在眉睫的危机提供强大的机械工具来预测和对授粉服务采取行动。
由于这些引脚作为量子比特[1]使用,因此仅利用光子吸收这一自然现象便可实现光子-电子纠缠测量(③)[2]。 3. 结果与讨论 我们将六个碱基对应的偏振光转移到庞加莱球上并进行断层扫描,得到了所有偏振保真度超过 80% 的结果(图 2)。这种保真度远远超过了经典极限(66%),并证明我们的转移是具有量子特性的量子态转移。传输保真度恶化的原因被认为是氮核自旋的初始化速度不完善。通过改善这一点,有望提高传输保真度。 4. 结论与展望我们成功地实现了光子的偏振态到氮核自旋的量子转移。未来,我们的目标不仅在于提高转录保真度,还在于将量子态转录到钻石中也存在的碳同位素的核自旋中。 5.参考文献 [1] Y. Sekiguchi, H.Kosaka 等,Nature Commun. 7, 11668 (2016)。 [2] H. Kosaka 和 N. Niikura,Phys. Rev. Lett.
量子隐形传态在量子通信领域有着重要的应用。本文研究了以GHZ态和非标准W态为量子信道在噪声环境中的量子隐形传态。通过解析求解Lindblad形式的主方程分析了量子隐形传态的效率。遵循量子隐形传态协议,得到了量子隐形传态保真度随演化时间的变化关系。计算结果表明,在相同的演化时间下,非标准W态的隐形传态保真度高于GHZ态。此外,我们考虑了在振幅衰减噪声条件下,采用弱测量和逆量子测量的隐形传态效率。我们的分析表明,在相同条件下,采用非标准W态的隐形传态保真度也比GHZ态更能抵御噪声。有趣的是,我们发现在振幅衰减噪声环境下,弱测量及其逆操作对GHZ和非标准W态的量子隐形传态效率没有积极影响。此外,我们还证明,通过对协议进行微小修改,可以提高量子隐形传态的效率。
2008 年,一种新颖的基于端口的隐形传态协议(PBT)被提出 [14, 15]。与 [5] 中发现的第一个隐形传态程序不同,它不需要接收方根据发送方测量的经典结果进行校正,见图 1。无需校正导致了许多普通隐形传态无法实现的新应用,例如 NISQ 协议 [3, 14]、基于位置的密码学 [4]、量子信道鉴别的基本限制 [24]、非局域性与复杂性之间的联系 [7],以及许多其他重要结果 [8, 16, 21, 23, 25, 27]。无需接收方校正带来的巨大优势是有代价的。根据无编程定理 [22],只有当各方利用无限数量的最大纠缠对时,这种方案中的理想传输才有可能。因此,我们区分了确定性场景和概率场景,前者是隐形传态不完美,隐形传态后的状态被扭曲,后者是隐形传态完美,但必须接受整个过程的非零失败概率。在第一种情况下,要学习
蜱和蜱传疾病影响着全球动物和人类的健康,造成了重大的经济损失。例如,仅莱姆病一项,每年就给美国的直接医疗费用造成约 13 亿美元(蜱传疾病工作组)。蜱的生命周期始于一个卵,卵内含有正在发育的胚胎,胚胎孵化为幼虫。蜱在幼虫和若虫阶段的每个阶段都需要吸一次血,成年雌性最后一次大量吸血才能发育成卵块,完成整个生命周期。蜱的生命周期与吸血性昆虫大不相同,吸血性昆虫通常只有成年昆虫(通常只有雌性)以脊椎动物的血液为食,因此只有成年昆虫才能传播受感染动物的疾病。相比之下,蜱在其生命周期的所有阶段都是专性吸血动物,这使得它们能够在各个生命阶段传播病原体。蜱虫可以传播许多病原体:细菌、病毒、原生动物和真菌(Jongejan 和 Uilenberg,2004 年;Rochlin 和 Toledo,2020 年)。莱姆病的病原体伯氏疏螺旋体是硬蜱传播的最重要病原体之一。然而,其他几种蜱传播的病原体对人类和动物健康也至关重要(Eisen 和 Eisen,2018 年)。此外,由于蜱虫会长时间(3-10 天)进食,它会与脊椎动物宿主相互作用,并可能抑制宿主的免疫系统。蜱虫除了是病原体的载体之外,还会因长时间吸食宿主而对宿主造成重大伤害:蜱虫感染率高时会导致失血,叮咬部位会继发感染(Eisen and Eisen,2018),蜱虫在脊髓附近吸食时会导致麻痹(Pienaar et al., 2018),以及对蜱虫叮咬的反应,如 alpha-gal 综合征(Commins and Platts-Mills,2013;
从认知信号(例如 fMRI)中解码文本刺激增强了我们对人类语言系统的理解,为构建多功能脑机接口铺平了道路。然而,现有的研究主要集中于从受限词汇表中解码单个单词级别的 fMRI 数据,这对于实际应用来说过于理想化。在本文中,我们提出了 fMRI2text,这是第一个开放词汇任务,旨在将 fMRI 时间序列与人类语言联系起来。此外,为了探索这项新任务的潜力,我们提出了一个基线解决方案 UniCoRN:用于脑解码的统一认知信号重建。通过重建单个时间点和时间序列,UniCoRN 建立了一个用于认知信号(fMRI 和 EEG)的鲁棒编码器。利用预先训练的语言模型作为解码器,UniCoRN 证明了其在各种分割设置中从 fMRI 序列中解码连贯文本的有效性。我们的模型在 fMRI2text 上实现了 34.77% 的 BLEU 得分,在推广到 EEG-to-text 解码时实现了 37.04% 的 BLEU,从而超越了之前的基线。实验结果表明了解码连续 fMRI 体积的可行性,以及使用统一结构解码不同认知信号的有效性。
疲劳是一个多方面的结构,是人类体验的重要组成部分。疲劳有两个主要方面:心理疲劳和身体疲劳,它们往往交织在一起,加剧了它们对日常生活和整体幸福感的共同影响。为了减轻这种影响,理解和量化疲劳至关重要。生理数据在理解疲劳方面起着关键作用,可以让我们深入了解疲劳的程度和类型。通过分析这些生物信号,研究人员可以确定一个人是感到精神疲劳、身体疲劳还是两者兼而有之。本文介绍了 MePhy,这是一个全面的数据集,包含各种生物信号,这些信号是在诱发不同的疲劳条件(尤其是精神疲劳和身体疲劳)时收集的。在与压力情况密切相关的生物信号中,我们选择了:眼部活动、心脏活动、皮肤电活动 (EDA) 和肌电图 (EMG)。数据是使用不同的设备收集的,包括相机、胸带和 BITalino 套件中的不同传感器。
坎宁安先生于 2014 年加入国防部,担任国家安全局数据中心管理实习生。此后不久,他开始在美国空军担任文职,担任第 33 网络战中队的防御性网络作战系统工程师。随后,他担任了越来越重要的职位,包括空军内部威胁中心的作战支持主管、第 33 网络战中队的工程和创新飞行主管、首席信息安全
华盛顿特区 — 部落理事会成员丹尼斯·哈维表示,保持团结、强大以及维持印第安人地区过去 4 年取得的成果是白宫部落国家峰会的关键内容。哈维出席了 12 月 9 日星期一举行的峰会,并参加了第二天的印第安博彩协会部落领导人会议。哈维担任西北代表。“这是一个非常积极的环境,”她说。“我们都知道我们将面临一些变化,但房间里没有任何消极情绪。我们谈到了印第安县在过去 4 年中取得的成就,真正的信息是如何保持并坚持下去。我们可以假设我们不会在下一届政府中获得很多额外好处,但如果我们能坚持下去