信号处理 (SP) 是一项“隐藏的”技术,它改变了数字世界,并在许多方面改变了我们的生活。数字 SP (DSP) 领域在 20 世纪 60 年代中期开始腾飞,得益于集成电路和数字计算机的普及。从那时起,DSP 领域发展迅速,推动了各个领域的突破性技术进步,对社会产生了深远的影响。IEEE 信号处理学会 (SPS) 是全球首屈一指的 SP 科学家和专业人士专业学会。通过其高质量的出版物、会议以及技术和教育活动,SPS 在推进 SP 的理论和应用方面发挥了关键作用。它在促进该领域研究人员、从业者和学生之间的跨学科合作和知识共享方面发挥了重要作用。本文重点介绍了 1998 年至 2023 年中期 SP 的进展以及 SPS 的发展以促进 SP 的发展。
注意力缺陷多动障碍 (ADHD) 是一种神经发育障碍,其特征是不同程度的冲动、多动和注意力不集中。治疗这种疾病并尽量减少其对学习、工作、建立关系和生活质量的负面影响在很大程度上取决于早期识别。脑电图 (EEG) 是一种有用的神经成像技术,可用于了解 ADHD。本研究通过使用固有时间尺度分解 (ITD) 分析 EEG 信号来检查 ADHD 儿童的大脑活动。由 ITD 产生的模式的不同组合(称为固有旋转分量 (PRC))用于提取各种基于连接的特征(幅度平方相干性、交叉功率谱密度、相关系数、协方差、相熵系数、相关系数)。在闭眼休息时记录了 15 名 ADHD 儿童和 18 名年龄匹配的健康儿童的 EEG 信号。使用从纵向和横向平面中选择的不同通道对来计算上述特征。通过各种机器学习方法和 10 倍交叉验证法,对所提出的方法进行评估,以区分 ADHD 患者和健康对照者。纵向和横向平面的分类准确率分别在 92.90% 至 99.90% 和 91.70% 至 100.00% 之间。我们的结果支持了所提出方法的出色性能,并且在识别和分类 ADHD 方面比类似研究取得了重大进展。
传统的高维脑电图 (EEG) 特征(频谱或时间)在认知工作量估计中可能并不总能取得令人满意的结果。相反,深度表示学习 (DRL) 将高维数据转换为聚类友好的低维特征空间。因此,本文提出了一种集成时空深度聚类 (ISTDC) 模型,该模型使用 DRL 后跟聚类方法来实现更好的聚类性能。使用四种算法和变分贝叶斯高斯混合模型 (VBGMM) 聚类方法说明了所提出的模型。时间和空间变分自动编码器 (VAE) 模型(在算法 2 和算法 3 中提到)使用长短期记忆和卷积神经网络模型从序列 EEG 信号和头皮地形图中学习时间和空间潜在特征。连接的时空潜在特征(在算法 4 中提到)被传递给 VBGMM 聚类方法,以有效估计𝑛-back 任务的工作量水平。对于 0-back vs. 2-back 任务,所提出的模型实现了 98.0% 的最大平均聚类准确率,比最先进的方法提高了 11.0%。结果还表明,所提出的多模态方法在工作量评估方面优于基于时间和空间潜在特征的单模态模型。
博士项目:使用听觉和深度学习的计算模型进行听力损失补偿 博士生:Peter Asbjørn Leer Bysted 开始日期:2020 年 11 月 1 日。公司主管:Lars Bramsløw,Eriksholm 研究中心,Oticon A/S。听力损失是指无法部分或完全听到声音,是一种影响超过 10 亿人的非常常见的疾病,尽管不同患者的听力损失表现方式存在很大差异,导致干预结果存在很大差异。近年来,描述听觉系统的计算模型已经出现,使研究人员能够解释人类听觉的复杂性,但目前尚不清楚如何利用这些发现来补偿听力辅助设备的听力损失。随着计算听觉模型的发展,神经网络出现了重大复兴,解决了各种复杂问题。虽然神经网络在各种语音增强应用中的应用是一个非常活跃的研究领域,但将其用于听力损失补偿基本上是一个尚未开发的研究领域。
作为神经病学和计算机科学的一个相对较新的领域,脑机接口 (BCI) 在不同科学学科中拥有许多成熟和蓬勃发展的应用。许多神经监测技术已被开发用于 BCI 研究。结合多种监测技术提供了一种新方法,该方法可以综合每种技术的优点并克服其局限性。本文系统地回顾了脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 混合为一个同步多模态的应用、局限性和未来方向。本综述调查了混合 EEG-fNIRS 研究的设计和可用性研究问题。在本文中,初步搜索包括 765 篇论文,通过 PRISMA 协议选出 128 篇论文。综述结果显示,通过优化特征提取算法和物理设计可以提高混合 EEG-fNIRS 的性能,并在信息处理相关领域扩展更多可能的应用。
脑机接口 (BCI) 被定义为使用脑信号控制设备或在设备和用户之间进行通信的接口 [1]。BCI 更全面的定义是,脑产生的电活动独立于正常的输出通路传输到周围的神经和肌肉的媒介 [2]。BCI 设计可以从从大脑各个区域记录的一个或多个电生理源中受益。在视觉刺激的作用下,大脑枕叶和顶叶中看到的电信号被称为视觉诱发电位。在低于 3.5 Hz 频率的刺激下从视觉皮层获得的 VEP 被称为瞬态 VEP [3,4],因为刺激无法触发在视觉皮层产生连续的正弦状反应。在 3.5 Hz 至 75 Hz 之间的刺激频率下,由于动作的叠加,形成了准正弦波形
量子信号处理 (QSP) 使用大小为 2 × 2 的酉矩阵乘积来表示度为 d 的实标量多项式,并由 ( d +1) 个实数(称为相位因子)参数化。这种创新的多项式表示在量子计算中有着广泛的应用。当通过截断无限多项式级数获得感兴趣的多项式时,一个自然的问题是,当度为 d →∞ 时,相位因子是否具有明确定义的极限。虽然相位因子通常不是唯一的,但我们发现存在一致的参数化选择,使得极限在 ℓ 1 空间中具有明确定义。这种 QSP 的广义称为无限量子信号处理,可用于表示一大类非多项式函数。我们的分析揭示了目标函数的规律性与相位因子的衰减特性之间存在令人惊讶的联系。我们的分析还启发了一种非常简单有效的算法来近似计算 ℓ 1 空间中的相位因子。该算法仅使用双精度算术运算,并且当目标函数的切比雪夫系数的 ℓ 1 范数的上限为与 d 无关的常数时,该算法可证明收敛。这也是第一个在极限 d →∞ 中具有可证明性能保证的数值稳定相位因子查找算法。
量子信号处理 (QSP) 使用大小为 2 × 2 的酉矩阵乘积来表示度为 d 的实标量多项式,并由 ( d +1) 个实数(称为相位因子)参数化。这种创新的多项式表示在量子计算中有着广泛的应用。当通过截断无限多项式级数获得感兴趣的多项式时,一个自然的问题是,当度为 d →∞ 时,相位因子是否具有明确定义的极限。虽然相位因子通常不是唯一的,但我们发现存在一致的参数化选择,使得极限在 ℓ 1 空间中具有明确定义。这种 QSP 的广义称为无限量子信号处理,可用于表示一大类非多项式函数。我们的分析揭示了目标函数的规律性与相位因子的衰减特性之间存在令人惊讶的联系。我们的分析还启发了一种非常简单有效的算法来近似计算 ℓ 1 空间中的相位因子。该算法仅使用双精度算术运算,并且当目标函数的切比雪夫系数的 ℓ 1 范数的上限为与 d 无关的常数时,该算法可证明收敛。这也是第一个在极限 d →∞ 中具有可证明性能保证的数值稳定相位因子查找算法。
抽象心率变异性(HRV)测量连续心跳之间时间的变化,并且是身心健康的主要指标。最近的研究表明,可以使用光摄影学(PPG)传感器来推断HRV。但是,许多先前的研究都有很大的错误,因为它们仅采用信号处理或机器学习(ML),或者是因为它们间接推断出HRV,或者因为缺乏大型培训数据集。许多先前的研究也可能需要大型ML模型。较低的精度和较大的模型尺寸将其应用限制在小型嵌入式设备上,并在医疗保健中的潜在使用中使用。为了解决上述问题,我们首先收集了一个大量的PPG信号数据集和HRV地面真相。使用此数据集,我们开发了HRV模型,将信号进程和ML结合起来直接推断HRV。评估结果表明,我们的方法在3之间存在错误。5%至25。 7%,仅优于仅信号处理的方法和仅ML的方法。 我们还探索了不同的ML模型,这表明决策树和多层次感知器具有13个。 0%和9。 平均有数百个KB的模型和推理时间小于1ms的平均误差。 因此,它们更适合小型嵌入式设备,并有可能使未来基于PPG的HRV监测在医疗保健中使用。5%至25。7%,仅优于仅信号处理的方法和仅ML的方法。我们还探索了不同的ML模型,这表明决策树和多层次感知器具有13个。0%和9。平均有数百个KB的模型和推理时间小于1ms的平均误差。因此,它们更适合小型嵌入式设备,并有可能使未来基于PPG的HRV监测在医疗保健中使用。
全球,心血管疾病是死亡的主要原因。基于临床数据,机器学习(ML)系统可以在早期阶段检测心脏病,从而降低死亡率。然而,在ML中,不平衡和高维数据一直是持续的挑战,在许多现实世界中(例如检测心血管疾病的检测)阻碍了准确的预测数据分析。为了解决这个问题,已经开发了针对心脏病检测的计算方法。但是,他们的表现仍然不足。因此,本研究为心脏病模型(称为SPFHD)提供了一个新的堆栈预测因子。SPFHD使用五种基于树的基于树的集合学习算法作为心脏病检测的基本模型。此外,使用支持向量机算法的基础模型的预测进行了整合,以增强心脏病检测的准确性。开发了一种新的条件变异自动编码器(CVAE)方法来克服不平衡问题,该方法的性能比常规平衡方法更好。最后,SPFHD模型是通过贝叶斯优化调整的。结果表明,所提出的SPFHD模型的表现优于四个数据集的最新方法,分别为HD Clinical,Z-Alizadeh Sani,Statlog和Cleveland的HD Clinical,HD Clinical,HD Clinical,HD Clinical clinical of 4.68%,4.55%,2%和1%。此外,这个新框架提供了重要的解释,通过利用强大的Shapley添加说明(SHAP)算法来帮助理解模型成功。这重点介绍了检测心脏病的最重要属性,并克服了当前无法揭示特征之间因果关系的当前“黑盒”方法的局限性。