默认模式网络 (DMN) 与复杂思维和行为的许多方面有关。在这里,我们利用尸检组织学和体内神经成像来描述 DMN 的解剖结构,以更好地了解其在信息处理和皮质通信中的作用。我们的结果表明,DMN 在细胞结构上是异质的,包含不同细胞结构类型,这些细胞结构类型可针对单模态、异模态和记忆相关处理进行不同程度的专门化。通过研究基于扩散的结构连接与细胞结构,我们发现 DMN 包含可接收来自感觉皮层输入的区域和相对与环境输入隔离的核心。最后,使用有效连接模型对信号流的分析表明,DMN 在平衡其在各个感觉层次之间的输出方面在皮质网络中是独一无二的。总之,我们的研究建立了解剖学基础,从中可以发展出 DMN 在人类大脑功能和认知中所起的广泛作用的机制解释。
采用这种概念,一些跨区域研究比较了刺激呈现后跨区域神经反应开始的时间 13 – 15 或归因于自上而下过程的选择性出现的时间 16 – 20 。其他研究利用同步记录,通过成对脉冲相关性 21 – 26 和信息论测量 27 测量了两个区域之间的时间延迟。同样,局部场电位的跨区域相位延迟也被测量了 28 – 31 。这些基于时间的方法增进了我们对信号如何在大脑区域间传播的理解。然而,由于这些方法主要关注神经元对或神经活动的总体测量,因此关于神经元群体如何协调其活动以实现跨区域信号传导仍有许多未知之处。
本研究提出了一种通过技术计算机辅助设计(TCAD)模拟评估振荡条件的新方法,并基于使用TCAD仿真结果计算的信号流图模型和散射参数(S-参数)。使用所提出的方法研究了短路时,碳化硅(SIC)金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化型晶体管效应晶体管(MOSFET)。使用该技术计算电路的振荡条件,并与TCAD瞬态模拟计算的振荡条件进行了比较。这些方法之间的栅极电阻抑制振荡。此外,该方法还应用于估计由相反连接的SIC MOSFET组成的电路的稳定性。考虑了两种振荡模式。我们证明,可以使用简单的计算来计算抑制寄生振荡所需的电路参数。