1。Meier,Florian。等。“在线平行积累 - 碎裂(Pasef),带有一种新型的离子迁移率质谱仪。”分子和细胞蛋白质组学17,否。12(2018):2534–45。 https://doi.org/10.1074/mcp.tir118.000900 2。 Meier,Florian。 等。 “ Diapasef:平行的积累 - 杂物碎片结合了与数据无关的采集结合。”自然方法17,否。 12(2020):1229–36。 https://doi.org/10.1038/s41592-020-00998-0 3。 女性,Antoine。 等。 “在TIMS-QTOF上获得高度多路复用的靶向蛋白质组学获取。”分析化学93,第1期。 3(2020):1383–92。 https://doi.org/10.1021/ acs.analchem.0c03180 4。 Steigenberger,芭芭拉。 等。 “碰撞横截面的辅助前体选择(CAPS-PASEF)用于交联质谱。”分子和细胞蛋白质组学19,第1期。 10(2020):1677–87。 https://doi.org/10.1074/mcp.ra120.002094 5。 Distler,Ute等。 “ Midiapasef最大化数据独立的获取蛋白质组学中的信息内容。” Biorxiv,(2023)。 https://doi.org/10.1101/2023.01.30.526204 6。 Szyrwiel,Lukasz等。 “ slice-pasef:碎裂所有离子,以使蛋白质组学中的最大灵敏度。” Biorxiv,2022。https://doi.org/10.1101/2022.10.31.51454412(2018):2534–45。https://doi.org/10.1074/mcp.tir118.000900 2。Meier,Florian。等。“ Diapasef:平行的积累 - 杂物碎片结合了与数据无关的采集结合。”自然方法17,否。12(2020):1229–36。https://doi.org/10.1038/s41592-020-00998-0 3。 女性,Antoine。 等。 “在TIMS-QTOF上获得高度多路复用的靶向蛋白质组学获取。”分析化学93,第1期。 3(2020):1383–92。 https://doi.org/10.1021/ acs.analchem.0c03180 4。 Steigenberger,芭芭拉。 等。 “碰撞横截面的辅助前体选择(CAPS-PASEF)用于交联质谱。”分子和细胞蛋白质组学19,第1期。 10(2020):1677–87。 https://doi.org/10.1074/mcp.ra120.002094 5。 Distler,Ute等。 “ Midiapasef最大化数据独立的获取蛋白质组学中的信息内容。” Biorxiv,(2023)。 https://doi.org/10.1101/2023.01.30.526204 6。 Szyrwiel,Lukasz等。 “ slice-pasef:碎裂所有离子,以使蛋白质组学中的最大灵敏度。” Biorxiv,2022。https://doi.org/10.1101/2022.10.31.514544https://doi.org/10.1038/s41592-020-00998-0 3。女性,Antoine。等。“在TIMS-QTOF上获得高度多路复用的靶向蛋白质组学获取。”分析化学93,第1期。3(2020):1383–92。https://doi.org/10.1021/ acs.analchem.0c03180 4。 Steigenberger,芭芭拉。 等。 “碰撞横截面的辅助前体选择(CAPS-PASEF)用于交联质谱。”分子和细胞蛋白质组学19,第1期。 10(2020):1677–87。 https://doi.org/10.1074/mcp.ra120.002094 5。 Distler,Ute等。 “ Midiapasef最大化数据独立的获取蛋白质组学中的信息内容。” Biorxiv,(2023)。 https://doi.org/10.1101/2023.01.30.526204 6。 Szyrwiel,Lukasz等。 “ slice-pasef:碎裂所有离子,以使蛋白质组学中的最大灵敏度。” Biorxiv,2022。https://doi.org/10.1101/2022.10.31.514544https://doi.org/10.1021/ acs.analchem.0c03180 4。Steigenberger,芭芭拉。等。“碰撞横截面的辅助前体选择(CAPS-PASEF)用于交联质谱。”分子和细胞蛋白质组学19,第1期。10(2020):1677–87。https://doi.org/10.1074/mcp.ra120.002094 5。Distler,Ute等。“ Midiapasef最大化数据独立的获取蛋白质组学中的信息内容。” Biorxiv,(2023)。https://doi.org/10.1101/2023.01.30.526204 6。Szyrwiel,Lukasz等。“ slice-pasef:碎裂所有离子,以使蛋白质组学中的最大灵敏度。” Biorxiv,2022。https://doi.org/10.1101/2022.10.31.514544
真诚希望本文件中提供的信息将为整个行业带来更令人印象深刻的安全记录;但是,美国化学工程师学会、其顾问、CCPS 小组委员会成员、其雇主、其雇主的官员和董事以及人类可靠性协会均不提供任何明示或暗示的保证或陈述,包括关于适用性、预期用途、使用或适销性和/或本文件中提供的信息内容的正确性或准确性。在 (1) 美国化学工程师学会、其顾问、CCPS 小组委员会成员、其雇主、其雇主的官员和董事以及人类可靠性协会和 (2) 本文件的用户之间,用户对使用或误用本文件造成的后果承担任何法律责任。
本指南包含向地方、州、领土和联邦卫生机构报告实验室结果的必要规范。特别是,本指南涉及与实验室可报告结果信息/ELR 传输相关的信息内容和动态。每个州和领土都要求实验室向卫生官员报告某些发现。过去,这些报告都是手写在卫生部门提供的表格上,然后邮寄到相应的办公室。随着实验室的计算机化,实验室可以通过电子方式向卫生部门发送可报告数据。本指南中描述的信息并不针对任何病原体或可报告状况,适用于大多数生物和化学实验室可报告发现。应该注意的是,本指南不涵盖实验室之间的结果报告。
用编程符号表示为:[ [ ⍺ , β ] ]。我们如何表示由多个量子比特组成的复合系统?它也是一个矢量吗?如果是,那么它位于什么空间中——多少维,它的基础是什么?在线性代数中,组合矢量空间有两种常用的方法,一种是直接和(用 ⊕ 表示),其中维度相加,另一种是张量积(用 ⊗ 表示),其中维度相乘。对于 n 量子比特系统,前者导致 2n 维空间,而后者产生 2 n 维。大自然选择了后者:多量子比特系统的矢量空间是组成量子比特空间的张量积。这一事实对量子计算具有关键意义,因为这意味着计算能力和信息内容随着量子比特的数量呈指数增长,而不是线性增长。 2. 空间