2 | ⟨ ψ | [ A, B ] | ψ ⟩| 取决于初始状态,因此并不固定,以至于当 | ψ ⟩ 的某些选择时它会消失,这些选择不必是可观测量 A 和 B 的同时特征函数。此外,基于偏差的不确定性关系通常不能捕捉可观测量互补方面 [12] 的物理内容和信息内容的传播 [13]。用可观测量的熵来表示不确定性最早是由 Everett [17] 提出的。参考文献 [14] 对此进行了肯定的回答,即位置和动量可观测量的熵之和满足不等式。对于具有连续谱的可观测量,这种熵不确定关系分别在参考文献 [15, 16] 中得到证明和改进。当系统状态为高斯波包时,不等式的下界成立。熵不确定性关系在有限维希尔伯特空间中的可观测量的扩展最早在文献[11]中提出,后来在文献[18]中得到改进。我们希望
量子模拟器为研究强相关量子物质提供了强大的手段。然而,解释此类系统中的测量结果带来了重大挑战。在这里,我们提出了合成量子物质中信息提取的理论框架,以自旋玻色-爱因斯坦凝聚态实验中的量子猝灭为例。利用提供不同信息内容度量的非参数无监督学习工具,我们展示了一种与理论无关的方法来识别主要自由度。这使我们能够根据运算符的相关性对其进行排序,类似于有效场论。为了表征相应的有效描述,我们随后探索数据集的固有维度作为动态复杂性的度量。这揭示了数据结构的简化,这与所研究系统中时间相关的通用行为的出现相关。我们的无假设方法可以立即应用于各种实验平台。
摘要:瞬态吸收(TA)光谱是确定激发态的能量和动力学的宝贵工具。当泵的强度足够高时,TA光谱包括通常所需的三阶响应和在现场幅度中较高顺序的响应。最近的工作表明,泵强度依赖性的TA测量值允许分开响应顺序,但尚未描述这些较高顺序中的信息内容。我们提供了一个一般框架来理解高阶TA光谱。我们扩展到高阶标准TA的基本过程:地面漂白剂(GSB),刺激发射(SE)和激发态吸收(ESA)。每个顺序介绍了两个新的过程:来自以前无法访问的高度激发态和低阶过程的负面的SE和ESA。我们在每个顺序上显示新的光谱和动态信息,并显示如何使用不同订单中信号的相对符号来识别哪些过程占主导地位。
液晶显示屏(LCD)是平板显示器或其他电子调制的光学设备,它使用液晶与极化器结合的光调节性能。液晶不会直接发出光,而是使用背光或反射器来产生颜色或单色的图像。LCD可用于显示任意图像(如通用计算机显示)或具有低信息内容的固定图像,可以显示或隐藏,例如预设单词,数字和七个段显示器,如数字时钟。他们使用相同的基本技术,除了任意图像是由小像素的矩阵制作的,而其他显示器具有较大的元素。LCD可以根据偏振器的排列通常在(正)或OFF(负)上。例如,带有背光的字符正面LCD在背景的背景上具有黑色字母,并且字符负LCD具有黑色背景,字母的字母与背光相同。光学滤镜被添加到蓝色LCD上的白色,以使它们具有特征性的外观。
尽管真空沉积薄膜通常被视为纯光学领域,但光学薄膜技术在美国太空计划中的应用可以追溯到 1957 年末至 1958 年初的先锋一号任务,当时该技术用于航天器的热控制。从更广泛的意义上讲,无论是用于温度控制还是光学应用,薄膜表面涂层的重要性都源于其与太空环境的直接接触,以及来自太阳、地球或更具选择性的目标的辐射能。在光学应用中,薄膜涂层启动了对到达的电磁波的信息内容进行重新形成的进程,或者通过与严酷的太空环境的辐射交换定量定义了涂层表面的使用寿命。当然,除了真空沉积薄膜之外,其他表面处理也用于热和光学空间应用,但本文将重点介绍真空沉积薄膜的独特特性及其在特定空间相关应用中的优势。
传统的媒体广告业务模型是通过信息内容吸引消费者的注意力,并将这种关注出售给广告商,以换取广告收入。这种单一的经济来源确定广告业务的风险不能有效地分散[1-2]。在传统的商业模式下,广告客户将寻求传统媒体的广泛客户资源,并利用媒体的平台向目标消费者传播广告信息。媒体运营商仅依靠地理优势和流通,评级,点击率和用户规模,而他们对广告商销售业绩的承诺越来越缺乏[3-4]。至于消费者,广告只能扮演单向信息传播角色,而消费者在获取广告信息后无法表达并最终意识到他们的进一步需求或购买意图。除了获得广告内容外,消费者很难获得其他价值服务,而且广告媒体公司还发现很难从信息服务以外的消费者那里获得利润[5-7]。
我们发现,Ikonos 卫星传感器数据非常适合低地高地沼泽栖息地分类任务。尽管该传感器只有四个相对较宽的光谱带,但它们位于能够很好地识别主要高地沼泽土地覆盖类别的光谱部分。我们发现,该任务所需的大部分光谱信息都包含在三个可见波段内。近红外波段在植被测绘和监测中非常有用,但我们发现它用处不大,尽管该波段的数据可用于识别低地高地沼泽的外部边界。我们发现,Ikonos 数据对于该任务最重要的属性是其高空间分辨率(多光谱模式下为 4 米)和出色的几何特性。这些特性使得人们能够像解读小比例彩色航空照片一样解读 Ikonos 图像。事实上,该项目的成果之一是重新认识了视觉图像解释的重要性,尽管它基于经过处理和增强以最大化其信息内容的数字数据。
摘要 - 使用加密信号检测攻击是具有挑战性的,因为加密隐藏了其信息内容。我们提出了一种新的机制,用于在不使用解密,安全通道和复杂通信方案的情况下使用错误(LWE)加密信号进行学习的新型机制。相反,检测器利用LWE加密的同态特性来对加密样品的转换进行假设检验。特权转换是通过解决基于硬晶格的最小化问题的解决方案来确定的。虽然测试的敏感性会因次优溶液而恶化,类似于打破加密系统的(相关)测试的指数恶化,但我们表明该劣化对于我们的测试是多项式的。可以利用此速率差距来选择导致加密较弱但检测能力的较大收益的参数。最后,我们通过提供一个数值示例来结束论文,该示例模拟异常检测,证明了我们方法在识别攻击方面的有效性。
本研究调查了语音产生、聆听和自听过程中语音包络跟踪的动态。我们使用的范例是,参与者聆听自然语音(聆听)、产生自然语音(语音产生)和聆听自己语音的回放(自听),同时用脑电图记录他们的神经活动。在时间锁定脑电图数据收集和听觉记录与回放之后,我们使用高斯 copula 互信息测量来估计脑电图中的信息内容与听觉信号之间的关系。在 2 – 10 Hz 频率范围内,我们确定了语音产生和语音感知过程中最大语音包络跟踪的不同延迟。最大语音跟踪发生在感知过程中听觉呈现后约 110 毫秒,以及语音产生过程中发声前 25 毫秒。这些结果描述了说话者和听众语音跟踪的特定时间线,符合语音链的概念,因此也与交流延迟有关。
在启动应用程序或设备时,用户可以保证环境尚未被恶意或其他方式更改?确保环境的完整性和机密性至关重要,尤其是在不在完全控制和安全的环境中的系统中。设备的完整性确保其数据是准确的,并且没有被恶意药物篡改,从而保护信息内容。在这种情况下,有必要使用证明环境保持安全状态的机制。tpms对于确保计算系统的完整性和可信度至关重要。他们使用对称密钥方案和消息验证代码(MAC)验证了硬件和软件组件的真实性。此外,TPM支持使用公共密钥加密算法,以允许受信任的第三方评估和比较不同设备的完整性。此过程对于防止运营失败,财务损失,服务中断和安全风险至关重要,突出了TPMS在维持系统完整性和安全性中的关键作用。