DNA分子上的数据存储是存档大量数据的有前途的方法[1] - [4]。在经典的DNA存储系统中,将二进制信息编码为由四个DNA碱基{a,c,g,t}组成的序列。编码序列用于使用DNA合成的生化过程生成称为链的DNA分子。合成的链储存在管中。要检索二进制信息,必须通过DNA测序读取链,并将解码回到二进制表示中。合成过程和测序程序是容易出错的,并且随着DNA的自然降解,它们会向DNA链引入错误。为了确保数据可靠性,必须通过算法和错误校正代码(ECC)来纠正错误。最近,为了允许更高的潜在信息能力[5],[6]引入了复合DNA合成方法。在此方法中,使用标准DNA合成方法创建的多个副本可用于创建复合DNA符号,该符号由DNA碱基的混合物及其比率定义,其比率及其特定位置。通过定义不同的混合物和比率,可以将字母扩展到具有4个以上的符号。更正式地,可以将特定位置的复合DNA符号抽象为概率的四重奏{p a,p c,p g,p g,p t},其中p x,0≤px≤1是基本x∈{a,c,g,t}的底数。因此,要识别复合符号,需要对多个读数进行测序,然后在每个位置估算p a,p c,p g,p t。由于该方法中字母符号的独特结构,基本级别的误差可以轻松更改观察到的碱基的混合物及其比率,因此更改了观察到的复合符号。此外,在此设置中,合成过程的固有冗余性(即,每股多个副本)不能直接用于
1>用您的手稿ID编号(在此处双击以进行编辑)<以脑为工业故障诊断的尖峰神经网络:调查,挑战和机会Huan Wang,Yan-Fu Li,IEEE和Konstantinos Gryllias高级成员和Konstantinos Gryllias的这项工作已提交给IEE EEE,以供IEE EEE。版权可以在不通知的情况下传输,此后不再可以访问此版本。摘要 - 近几十年来,工业故障诊断(IFD)已成为与检测和收集有关工业设备健康状况的重要信息的关键纪律,从而促进了失败类型和严重性的识别。追求精确有效的故障识别引起了极大的关注,最终集中于自动化设备监控以防止安全事故并减少对人工劳动的依赖。人工神经网络(ANN)的出现在增强智能IFD算法方面发挥了作用,尤其是在大数据的背景下。尽管有这些进步,但ANN是一种简化的仿生神经网络模型,表现出固有的局限性,例如资源和数据依赖性以及受限的认知能力。为了解决这些局限性,建立在脑启发的计算原理的第三代尖峰神经网络(SNN)已成为有希望的替代方案。SNN的特征是其生物神经元动力学和尖峰信息编码,在表示时空特征方面具有出色的潜力。因此,开发基于SNN的IFD模型已获得动力,表现出令人鼓舞的性能。尽管如此,该领域缺乏系统的调查来说明当前情况,挑战和未来的方向。因此,本文系统地回顾了基于SNN的模型的理论进展,以回答SNN是什么问题。随后,它审查和分析了现有的基于SNN的IFD模型,以解释为什么需要使用SNN以及如何使用SNN。更重要的是,本文系统地回答了IFD中SNN的挑战,解决方案和机会。索引术语 - 智能诊断,工业健康监测,尖峰神经网络,深度学习。
编码特征作为预测结果,邀请用户进行认知情况调 研。从用户调研数据的计算结果可知,用户对不同特 征编码的认知存在一定的共性,有共同的认知习惯。 1 )就属性语义来看,认知效率主要受色相、明 度、饱和度、尺寸、位置、形状的影响。色相:国军 标对色彩的应用有明确的规范,在进行色相编码时, 应考虑用户对专用色彩属性的认知习惯,严格遵守色 彩使用规范。对于没有硬性规定的色彩,也应以用户 过往的知识、经验为基础进行编码设计。如,在界面 设计中,一般认为红色表示危险,黄色表示警告,绿 色表示安全。明度:实验表明,在深色背景下,明度 越高信息等级越高。战术显控系统复杂性较高,合适 的明度编码设计适合应用于信息层级设计,能够有效 降低用户的学习成本。饱和度:饱和度取决于该色中 含色成分和消色成分(灰色)的比例。含色成分越大, 饱和度越大;消色成分越大,饱和度越小 [14] 。高饱和 度的色彩编码方式更能引起视觉关注,帮助用户集中 注意力。形状:在战术显控系统中,涉及形状属性的 元素主要为图形和符号,包括通用类和特殊类。在进 行形状编码时,现有图符应遵循沿用的原则,新的图 符应结合现实形态、行业背景进行设计,以符合用户 认知习惯、缩短学习过程,提高交互效率。尺寸:根 据实验结果显示,信息尺寸的大小与信息的重要等级 成正比,信息越重要,尺寸越大。位置:用户对显示 屏上的信息关注度依次为中间、左上方、右上方、左 下方、右下方 [15] 。在进行界面布局时,应注意信息等 级与其在界面中位置的一致性,同时要保证同类信息 的位置编码统一。 2 )就情感语义来看,战时用户的生理和心理负 荷较高,任务情景的不确定性易增加用户的操作压 力 [5] 。在进行交互界面设计时应考虑信息编码元素的 情感性。从实验结果来看,影响情感语义的特征主要 为形状和色彩。尖锐的形态容易让用户产生较大的心 理压力,而圆润浑厚的形状更容易使用户平静。在进 行形状编码时,可采用倒角的设计手法。根据蒙赛尔 色彩体系对色彩要素的划分及实验结果,战术显控系 统的主色可以选用冷色调,明度、饱和度不宜过高, 以避免色彩刺激增加用户的焦虑感。而对于重点信息 和即时变化类信息,可采用高明度或高饱和度的色 彩,以提高用户的警觉性。
量子信息处理为计算提供了更通用的概念,有望比传统计算机更高效。通过将信息编码在纠缠量子态中,某些算法(例如整数分解)有望实现比最知名的传统变体指数级加速。捕获离子是量子信息处理这一高度活跃领域的领先技术之一。它们允许原理验证演示,但仍然仅限于对数十个量子比特的操作。将这些系统扩展到其计算能力超过传统计算机能力的规模仍然是一项非常具有挑战性的任务。在本论文的范围内,对低温离子捕获装置进行了修改和表征,目的是展示可扩展量子计算的构建模块。本论文介绍了三个相互关联的项目。第一个项目涉及实验装置本身,该装置内有一个分段表面陷阱,能够捕获 40 Ca + 和 88 Sr + 离子。我们描述了该装置和实施的修改以及为评估其性能而执行的特性测量。然后使用该装置开发和评估一种用于纠缠门的新型校准算法。量子门操作的性能由实验决定,取决于操作参数的确定和设置的准确性,以及这些参数的稳定性。开发的校准协议可以自动估计和调整被广泛用于离子阱量子信息处理器的两量子比特 Mølmer-Sørensen 纠缠门操作的实验参数。使用贝叶斯参数估计的协议在不到一分钟的时间内完成,由于校准错误导致的剩余中位门不保真度小于退相干源给出的不保真度。最后,使用了一种新颖的门方案来演示混合物种纠缠,它可以实现按顺序读出而不会扰乱整个寄存器,这是纠错的关键因素。相同的门方案也可用于在量子比特之间产生纠缠,这是量子位的概括。通过使用每个离子的更多级别,可以在相同数量的粒子中编码更多信息,从而增加量子计算希尔伯特空间的大小。