摘要 — 我们研究了无线电信道模拟器在预测特定环境中的信道响应方面的可靠性。室内环境的表面几何布局和材料特性已知,因此适合进行这种针对特定地点的模拟。我们通过将该方法的预测结果与特定静态环境中的测量结果进行比较来评估该方法的性能。在测量和模拟的一组路径上,路径损耗、莱斯 K 因子和 RMS 延迟扩展具有良好的一致性,这表明设计良好的无线电模拟器可以可靠地预测系统行为。通常,通过这种或类似技术获得的无线信道模型不会捕捉由于环境中人员移动而导致的信道响应的时间变化。我们使用随机过程处理信道响应的时变部分。通过对几个典型的办公场景进行信道探测实验,我们表明自回归过程可用于为几种不同的运动场景建模时变抽头增益。
摘要 — 我们研究了无线电信道模拟器在预测特定环境中的信道响应方面的可靠性。已知表面几何布局和材料特性的室内环境适合进行这种特定场地的模拟。我们通过将其预测与特定静态环境中的测量值进行比较来评估该方法的性能。在测量和模拟的一组路径上,路径损耗、Ricean K 因子和 RMS 延迟扩展具有良好的一致性,这表明可以使用设计良好的无线电模拟器可靠地预测系统行为。通常,通过这种或类似技术获得的无线信道模型不会捕捉由于环境中人员移动而导致的信道响应的时间变化。我们使用随机过程处理信道响应的时变部分。通过对几种典型办公场景进行信道探测实验,我们表明自回归过程可用于为几种不同的运动场景建模随时间变化的抽头增益。
由于雷达系统使用 5 GHz 频谱中的某些频段,因此在这些频段中运行的 WLAN 设备必须使用 DFS(动态频率选择)来检测雷达活动并自动切换信道以避免干扰雷达操作。对于 ETSI 地区,HiveAP 300 系列已通过最新 ETSI EN 301 893 v1.5.1 DFS 要求认证,并且可以使用 DFS 信道 52 至 140(5.26 GHz 至 5.32 GHz 和 5.5 GHz 至 5.7 GHz)。为了在室外部署 HiveAP 300 系列设备时符合 ETSI 规定,请将 5 GHz 无线电设置为在 DFS 信道上运行并启用 DFS。在室内部署时,5 GHz 无线电还可以使用信道 36 至 48 以及 DFS 信道。在 ETSI 地区,信道 36 至 48 的最大发射功率为 17 dBm。由于此最大值由 HiveOS 强制执行,因此即使设置大于该值,HiveAP 也会自动将功率限制为 17 dBm。
在这种情况下,人工智能(AI)的应用已成为克服无线通信中这些挑战的有前途解决方案。支持AI的技术为解决MIMO系统的各个方面提供了有效的选择,为渠道估计,信号处理和资源管理提供了独特的解决方案。本文探讨了使用AI优化MIMO系统性能和准确性的潜力。通过利用机器学习(ML)和深度学习(DL)方法,研究人员可以设计有效的,自学习的框架,以更新CSI获取和减轻干扰。这项工作的目的是提供该主题的概述,并说明AI如何帮助从5G到6G网络的过渡,同时还强调了先前方法的局限性[7],[8],[11]。
摘要 | 信息论涉及信息源的有效表示,并为通过信道可靠地传输的信息量提供基本限制。这些源和信道通常是经典的,即由标准概率分布表示。量子信息论将其提升到一个新的水平,我们允许源和信道是量子的。从量子态的表示到量子信道上的通信,该理论不仅从本质上概括了经典的信息论方法,而且还解释了叠加、纠缠、干涉等量子效应。在本文中,我们将回顾并重点介绍无限维量子信道的信息论分析。需要无限维来模拟当今实用网络、分布式量子通信和量子互联网中无处不在的量子光信道。与有限维信道相比,无限维引入了一些独特的问题,并且尚未在文献中从量子信息理论的角度进行深入探讨。对于这些信道,我们提供了基本概念和最先进的信道容量结果。为了使本文自成体系,我们还回顾了有限维结果。
部署量子信道和经典数据信道可以共存的光网络对于在网络“运营商”基础设施中采用 QKD 网络至关重要。当网络运营商考虑将 QKD 网络引入其现有网络时,有几种实施方案可供选择,例如,将量子信道和经典数据信道集成在一根光纤中或将它们分离在不同的光纤中。将量子信道和经典数据信道集成在一根光纤中有两个主要技术问题:传输光功率和信道可实现的链路距离之间的差异。网络运营商可以选择将这些信道分开,将量子信道置于 QKD 网络中,将经典数据信道置于光传输网络 (OTN) 中。这可以优化 QKD 网络在光纤丰富的环境中的性能。在这种分离的情况下,在软件定义网络 (SDN) 架构的设计原则下,QKD 网络和 OTN 可以由不同的 SDN 控制器控制。
量子通信理论专注于研究传输量子信息的量子信道,其中传输速率由量子信道容量来衡量。这个量表现出几个有趣的特性,例如非可加性、超激活等等。在这项工作中,我们表明,一种被称为抗降解单模高斯信道的量子信道(其容量被认为为零)可以通过引入量子纠缠来“激活”以传输量子信息。虽然信道的输出本身不能用于检索输入信号,但将其与额外的纠缠相结合可以实现这一点。除了理论意义之外,这种激活还可以在实际系统中实现。例如,在双模压缩相互作用机制中用于量子转导的电光系统中,转导通道是抗降解的。我们证明该系统可以在与辅助模式的纠缠的帮助下传输微波光量子信息。这样就产生了一种新型的量子换能器,它在很宽的参数空间上表现出正的量子容量。引言——量子通道模拟了量子信息在时间或空间中的传输。研究各种噪声量子通道及其潜在的信息传输速率——量子通道容量——是量子通信理论的核心。与经典量子通道容量不同,量子通道容量没有简单的公式,其评估通常涉及计算困难的所谓双字母优化[1,2]。因此,量子容量表现出一系列不寻常的行为,如活化和超活化[3-6],这反映了量子信息在通道中传播的非平凡方式。只有少数特定类型的量子通道的量子容量的确切值才是已知的。有一种这样的信道被称为抗降解信道,它已被证明具有零量子容量 [ 7 , 8 ],这意味着没有量子信息能够以零误差通过该信道。在本文中,我们表明,如果将一种抗降解玻色子高斯信道与辅助信道相结合,则可以实现非零量子信息传输速率
基于弱测量和量子测量反转(WMR)的量子技术,我们提出了一种保护纠缠的两量子比特纯态免受四种典型的带记忆量子噪声信道影响的方案,即 。e 。,振幅衰减通道,相位衰减通道,比特翻转通道和去极化通道。对于给定的初始状态 | ψ ⟩ = a | 00 ⟩ + d | 11 ⟩ ,发现 WMR 操作确实有助于保护纠缠免受上述四种带记忆量子信道的影响,并且系数 a 较小时 WMR 方案的保护效果更好。对于另一初始状态 | φ ⟩ = b | 01 ⟩ + c | 10⟩,无论系数b是多少,保护方案的效果都是一样的,并且WMR操作可以保护有记忆的振幅衰减信道中的纠缠。此外,无记忆的量子噪声信道中的纠缠保护效果比有记忆信道的结果更好。对于|ψ⟩或|φ⟩,我们还发现记忆参数对抑制纠缠猝死有显著作用,初始纠缠可以被大幅度放大。另一个更重要的结果是,通过计算和讨论,找到了并发性、记忆参数、弱测量强度和量子测量反转强度之间的关系。这为系统在噪声信道中保持最大纠缠提供了有力的基础。
本论文由 ScholarWorks@UARK 免费提供给您,供您开放访问。它已被 ScholarWorks@UARK 的授权管理员接受,可纳入研究生论文和学位论文中。如需更多信息,请联系 uarepos@uark.edu。