• 信道绑定需要连续的频谱来绑定两个信道。 • 由于通常需要 DFS,5 GHz 在整个频谱中存在一些间隙,因此系统无法使用信道绑定来利用所有信道。 • 信道绑定时噪声加倍,因为噪声从两个相邻信道累积而 AP 以相同功率传输,因此 SNR 降低。 • 每次信道绑定(40 MHz)都会导致 SNR 降低 3 dB。 • 对于 80 MHz 信道,SNR 将降低 6 dB。 • EIRP 规则确定最大传输功率水平,而不管信道宽度如何。 • 6 GHz 有新的阈值代替 EIRP - 它称为功率谱密度 (PSD)。 • PSD:允许低功率室内 (LPI) AP 传输更多功率,同时使用更多信道宽度容量来克服此问题。 • Wi-Fi 6E LPI 的最大功率为 5 dBm/MHz PSD。 • 这意味着每次信道宽度加倍时都会增加 3 dB 的最大功率。
获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。
其中 U ð t Þ ¼ e − itH(取 ℏ ¼ 1),tr E 是环境上的部分迹。这种量子过程的开放系统模型表明,诱导量子信道可以理解为较短(时间和诱导变化)状态变换的组合。然而,正如 Wolf 和 Cirac [1] 的开创性著作中所发现的那样,存在不能写成其他信道的串联的量子信道;因此,它们是不可分割的。这类似于素数;它们不能被分解。在本文中,我们将更详细地研究这种类比,并展示它在量子信道结构问题中的强大应用。我们感兴趣的是看看如何将给定的信道分解为不可分割的信道。具体来说,我们的目标是表征 n 可分割量子信道的家族,即最多由 n 个量子信道串联而成的信道。正如我们将看到的,可分割性和因式分解之间存在几个关键区别。首先,
摘要 — 要获得可重构智能表面 (RIS) 的好处,通常需要信道状态信息 (CSI)。然而,RIS 系统中的 CSI 获取具有挑战性,并且通常会导致非常大的导频开销,尤其是在非结构化信道环境中。因此,RIS 信道估计问题引起了广泛关注,并且近年来也成为热门研究课题。在本文中,我们针对一般非结构化信道模型提出了一种决策导向 RIS 信道估计框架。所采用的 RIS 包含一些可以同时反射和感知传入信号的混合元素。我们表明,借助混合 RIS 元素,可以准确恢复导频开销与用户数量成比例的 CSI。因此,与采用无源 RIS 阵列的系统相比,所提出的框架大大提高了系统频谱效率,因为无源 RIS 系统中的导频开销与 RIS 元素数量乘以用户数量成正比。我们还对导频导向和决策导向框架进行了详细的频谱效率分析。我们的分析考虑了 RIS 和 BS 的信道估计和数据检测误差。最后,我们给出了大量模拟结果来验证分析的准确性,并展示了所提出的决策导向框架的优势。
摘要。最近提出的量子系统使用频率复用量子比特技术来读取电子器件,而不是模拟电路,以提高系统的成本效益。为了恢复单个通道以供进一步处理,这些系统需要一种解复用或通道化方法,该方法可以低延迟处理高数据速率,并且使用很少的硬件资源。本文介绍了一种使用多相滤波器组 (PFB) 信号处理算法的低延迟、适应性强的基于 FPGA 的通道器。由于只需设计一个原型低通滤波器来处理所有通道,因此 PFB 可以轻松适应不同的要求,并进一步简化滤波器设计。由于每个通道都重复使用相同的滤波器,与传统的数字下变频方法相比,它们还降低了硬件资源利用率。实现的系统架构具有广泛的通用性,允许用户从不同数量的通道、采样位宽度和吞吐量规格中进行选择。对于使用 28 系数转置滤波器和 4 个输出通道的测试设置,所提出的架构可产生 12.8 Gb/s 的吞吐量和 7 个时钟周期的延迟。
引言:量子通信使远程双方能够在远距离上安全地共享秘密信息 [1]。自从 Bennett 和 Brassard [2] 提出开创性的协议以来,人们开发了不同的量子通信模式,例如量子密钥分发 (QKD)、量子秘密共享、量子安全直接通信 (QSDC)、量子隐形传态、量子密集编码等 [2–6]。QSDC 是量子通信的重要模式之一;与 QKD 相比,QSDC 直接通过量子信道发送秘密信息,而无需预先设置密钥,从而消除了与密钥管理和密文攻击相关的进一步安全漏洞 [7]。自从第一个 QSDC 协议被提出 [4] 以来,它已成为过去十年量子通信的热门研究课题之一 [8–19]。对于纠缠载流子,2003 年邓志强、龙志强和刘志军提出了两步 QSDC 协议,明确提出了 QSDC 的标准 [20]。随后,基于高维纠缠、多体纠缠和超纠缠的 QSDC 协议相继被发展出来 [21–25]。对于单光子载流子,文献 [26] 提出了第一个 QSDC 协议,即所谓的 DL04 协议,其可行性已在 [27–29] 中得到证明。张伟等人进行了带有量子存储器的 QSDC 实验 [30]。齐若阳等人 [31] 进行了基于量子存储器的 QSDC 实验 [32]。
确定量子信道的容量是量子信息论中的一个基本问题。尽管有严格的编码定理来量化跨量子信道的信息流,但由于超加性效应,人们对其容量的理解甚少。研究这些现象对于深化我们对量子信息的理解非常重要,然而简单明了的超加性信道的例子却很少。在这里,我们研究了一类称为鸭嘴兽信道的信道。其最简单的成员是三元组信道,当与多种量子比特信道联合使用时,显示出相干信息的超加性。高维家族成员与擦除信道一起使用时表现出量子容量的超加性。受配套论文 [ 1 ] 中提出的“自旋对准猜想”的影响,我们关于量子容量超加性的结果扩展到了低维信道以及更大的参数范围。特别是,超加性发生在两个弱加性信道之间,每个信道本身都具有很大的容量,这与之前的结果形成了鲜明的对比。值得注意的是,单一、新颖的传输策略在所有示例中都实现了超可加性。我们的结果表明,超可加性比以前想象的要普遍得多。它可以发生在各种各样的通道中,即使两个参与通道都具有很大的量子容量。
摘要 — 智能反射面 (IRS) 利用低成本、无源反射元件来增强无源波束增益、提高无线能量传输 (WET) 效率,并使其能够部署到众多物联网 (IoT) 设备中。然而,IRS 元件数量的增加带来了相当大的信道估计挑战。这是由于 IRS 中缺少有源射频 (RF) 链,而导频开销变得难以忍受。为了解决这个问题,我们提出了一种无信道状态信息 (CSI) 的方案,该方案最大化特定方向的接收能量并通过相位波束旋转覆盖整个空间。此外,我们考虑了不完善的 IRS 的影响,并精心设计了有源预编码器和 IRS 反射相移以减轻其影响。我们提出的技术不会改变现有的 IRS 硬件架构,允许在当前系统中轻松实现,并且无需额外成本即可访问或移除任何能量接收器 (ER)。数值结果证明了我们的无 CSI 方案在促进大规模 IRS 方面非常有效,并且不会因过多的导频开销而影响性能。此外,在涉及大规模 ER 的场景中,我们的方案优于基于 CSI 的方案,使其成为物联网时代的一种有前途的解决方案。
纠缠态的制备和保存是任何量子信息平台的基石。然而,量子信息科学中最强大的对手是不必要的环境影响,例如退相干和耗散。在这里,我们讨论如何控制和利用系统与环境耦合产生的耗散,为量子机器学习提供静止的纠缠态。为此,我们设计了一个耗散量子通道,即与压缩真空场库相互作用的双量子比特系统,并通过求解相应的主方程来研究通道的输出状态,特别是在小压缩范围内。我们表明,通道的时间相关输出状态是所谓的双量子比特 X 状态,它可以概括许多纠缠的双量子比特状态系列。此外,通过将一般的贝尔对角态视为系统的初始状态,我们发现这种耗散通道在稳态状态下会产生两类众所周知的纠缠混合态和类沃纳态。此外,该通道提供了一种有效的方法来确定给定的初始状态是否会导致静止纠缠态。最后,我们研究了设计的双量子比特通道在量子机器学习中的潜在应用。将双量子比特通道的非幺正变换与并行处理的神经计算相结合,建立了有意义的量子神经网络的要求。关键词:耗散双量子比特通道;量子机器学习,静止纠缠态;压缩水库
Khodr, M. 使用三级多光子协议在 1550nm、1310nm 和 850nm 处实现的最大距离评估《CYBER 2017:第二届网络技术和网络系统评估国际会议论文集》,第 32-34 页。西班牙巴塞罗那,2017 年 11 月 12-16 日