ENTR V4 通过直接数字射频 (RF) 处理接收 IBS UHF 卫星通信信号。小尺寸可同时接收和处理多达四个 IBS 替代路径信道和通用交互式广播 (CIB),而无需多个昂贵、敏感的 RF 组件。可以动态重新配置信道方案,而不会干扰操作。
量子通信有望实现量子信息的可靠传输、纠缠的有效分布和完全安全的密钥的生成。对于所有这些任务,我们需要确定量子信道两端的两个远程方可以实现的最佳点对点速率,而不受其本地操作和经典通信的限制,这些速率可以是无限的和双向的。这些双向辅助容量代表了无需量子中继器即可达到的最终速率。在这里,通过基于纠缠的相对熵构建上限并设计一种称为“传送拉伸”的与维度无关的技术,我们为许多基本信道建立了这些容量,即玻色子有损信道、量子限制放大器、任意维度的失相和擦除信道。特别是,我们精确地确定了影响任何量子密钥分发协议的基本速率损失权衡。我们的发现设定了点对点量子通信的极限,并为量子中继器提供了精确和通用的基准。
由于雷达系统使用 5 GHz 频谱中的某些频段,因此在这些频段中运行的 WLAN 设备必须使用 DFS(动态频率选择)来检测雷达活动并自动切换信道以避免干扰雷达操作。对于 ETSI 地区,HiveAP 300 系列已通过最新 ETSI EN 301 893 v1.5.1 DFS 要求认证,并且可以使用 DFS 信道 52 至 140(5.26 GHz 至 5.32 GHz 和 5.5 GHz 至 5.7 GHz)。为了在室外部署 HiveAP 300 系列设备时符合 ETSI 规定,请将 5 GHz 无线电设置为在 DFS 信道上运行并启用 DFS。在室内部署时,5 GHz 无线电还可以使用信道 36 至 48 以及 DFS 信道。在 ETSI 区域,36 至 48 通道的最大传输功率为 17 dBm。由于此最大值由 HiveOS 强制执行,因此即使设置大于该值,HiveAP 也会自动将功率限制为 17 dBm。
安全性和隐私性是现代通信系统的关键方面 [1]。经典的窃听信道最早由 Wyner [2] 提出,用于模拟存在被动窃听者时的通信。另一方面,Merhav 和 Shamai [3] 提出了一种不同的通信系统,其隐私要求是掩蔽。在这种情况下,发送方通过无记忆状态相关信道 p Y | X,S 传输序列 X n ,其中状态序列 S n 具有固定的无记忆分布,不受传输影响。X n 的发送方被告知 S n ,并需要向接收方发送信息,同时限制接收方可以了解的有关 S n 的信息量。掩蔽设置也可以看作是与不受信任方的通信,其中 Alice 希望向 Bob 发送有限量的信息,并隐藏信息源 [4, 5]。相关设置也在 [6–8] 中进行了考虑。量子信息领域在实践和理论方面都在迅速发展 [9]。通过量子信道的通信可以分为不同的类别。对于经典通信,霍尔沃-舒马赫-威斯特摩兰 (HSW) 定理为量子信道的容量提供了一个正则化(“多字母”)公式 [10, 11]。虽然这种公式的计算一般难以处理,但它提供了可计算的下限,并且在特殊情况下可以精确计算容量。另一个有趣的场景是 Alice 和 Bob 共享纠缠资源。虽然纠缠可用于产生共享随机性,但它是一种更强大的辅助 [12]。例如,使用超密集编码,纠缠辅助可将无噪声量子比特信道上经典消息的传输速率提高一倍。Bennett 等人 [13] 在量子互信息方面充分表征了有噪声量子信道的纠缠辅助容量。Boche 等人 [14] 在编码器中使用信道状态信息 (CSI) 处理经典量子信道。容量是根据因果 CSI 确定的,并且正则化
在本研究中,我们提出了一种双向量子通信方案,其中两个合法参与者使用四量子比特簇状态作为量子信道相互交换量子信息。最近,Kazemikhah 等人 [ Int. J. Theor. Phys., 60 (2021) 378] 利用四量子比特簇状态作为量子信道,尝试设计一种两个合法参与者之间相互交换量子信息的方案。然而,在本研究中,已经证明在他们的方案中无法实现量子信息的传输,因为由于 Kazemikhah 等人在描述量子信道时犯了一个微不足道的概念错误,两个参与者彼此并不纠缠。在这里,我们已经证明,两个合法参与者可以使用四量子比特簇状态作为量子信道相互传送量子信息态,只要他们相互合作并执行非局部控制相位门操作。如果双方不相互合作,那么就没有人能够重建发送给他们的信息,因此只有双方彼此诚实时才有可能进行信息交换。
摘要 — 当前的量子计算机受到非平稳噪声信道的影响,错误率很高,这削弱了它们的可靠性和可重复性。我们提出了一种基于贝叶斯推理的自适应算法,该算法可以根据变化的信道条件学习和减轻量子噪声。我们的研究强调了对关键信道参数进行动态推理以提高程序准确性的必要性。我们使用狄利克雷分布来模拟泡利信道的随机性。这使我们能够进行贝叶斯推理,从而可以提高时变噪声下概率误差消除 (PEC) 的性能。我们的工作证明了表征和减轻量子噪声的时间变化的重要性,这对于开发更准确、更可靠的量子技术至关重要。我们的结果表明,当使用与理想分布的 Hellinger 距离来衡量时,贝叶斯 PEC 的性能可以比非自适应方法高出 4.5 倍。索引词 — 设备可靠性、计算精度、结果可重复性、概率错误消除、自适应缓解、时空非平稳性、时变量子噪声、NISQ 硬件-软件协同设计
建立比例因子所需的设备参数必须取自两个文件,即声纳浮标和接收器规范,并且此信息在本说明中提供。无线电接收鉴频器常数的参数值已在实验室中通过实验验证。校准系数是根据设备参数确定的。我们表明,即使处理未校准,如果我们想要实现波束形成,则必须根据全向信道对从 DIFAR 浮标发出的定向信道进行正确加权。
量子密钥分发 (QKD) 的目的是使两方(Alice 和 Bob)能够在共享量子信道时生成密钥。例如,在 Ekert [ 1 ] 提出的实现中,信道由一个产生纠缠粒子的源组成,这些粒子被分发给 Alice 和 Bob。在每一轮中,Alice 和 Bob 各自从几种测量设置中选择一个来测量一个粒子。通过推断(从 Alice 和 Bob 的测量结果中)源发射接近于纯二分纠缠态的状态,可以保证 Alice 的测量结果是安全的,即任何可能控制量子信道的第三方(Eve)都不知道。这同时确保了如果 Bob 选择适当的测量设置,Bob 的结果与 Alice 的结果相关,即 Alice 和 Bob 的测量结果可以形成密钥。
没有量子电路可以将完全未知的单元门变成其相干控制版本。然而,实验中已经实现了对未知门的相干控制,利用了不同类型的初始资源。在这里,我们将这些实验实现的任务形式化,将其扩展到任意噪声信道的控制,以及涉及更高维控制系统的更一般类型的控制。对于相干控制的标准概念,我们确定了用于控制 d 维系统上任意量子信道的信息论资源:具体而言,该资源是一个扩展的量子信道,充当 (d + 1) 维系统的 d 维扇区上的原始信道。使用此资源,可以用通用电路架构构建任意受控通道。然后,我们将标准的控制概念扩展为更一般的概念,包括对可能具有不同输入和输出系统的多个通道的控制。最后,我们开发了一个理论框架,称为路由通道上的超级映射,它提供了将相干控制作为在扩展通道上执行的操作的紧凑表示,并强调了该操作对不同部门的作用方式。
a) 现在我们来看看使用这个量子信道发送经典信息时会发生什么。我们从任意输入概率分布 PX (0) = q, PX (1) = 1 − q 开始。我们将这个分布编码为状态 ρ X = q | 0 ⟩⟨ 0 | +(1 − q ) | 1 ⟩⟨ 1 | 。现在我们通过量子信道发送 ρ X ,即让它在 E p 下演化。最后,我们在计算基础上测量输出状态 ρ Y = E p ( ρ X )。计算条件概率 PY | X = x ( y )