抽象背景:CRISPR-CAS9辍学屏幕是用于研究以前所未有的精度和规模研究生物学的强大工具。但是,数据的偏见会导致对解释和损害总体质量的潜在混杂影响。CAS9的活性受到目标位点的结构特征的影响,包括拷贝数放大(CN偏置)。更令人担忧的是,近端靶向基因座倾向于产生与CRISPR-CAS9靶向(接近度偏差)的基因无关的反应,这可能是由于CAS9引起的整个染色体臂截断或其他基因组结构特征和不同的染色质访问性水平。结果:我们对八种计算方法进行了基准测试,严格评估了它们在迄今为止两个最大的公开可用的CRISPR-CAS9屏幕中减少CN和接近性偏置的能力。我们还通过评估处理后的数据允许准确检测真正的阳性基本基因的程度,确定的肿瘤遗传成瘾以及已知的癌症依赖性生物标志物,来评估每种方法保持数据质量和异质性的能力。我们的分析阐明了每种方法在不同情况下纠正偏见的能力。当共同处理具有可用CN信息的模型的多个模型屏幕时,AC-CHRONOS的校正CN和CORXIM偏差的其他方法都超过了其他方法,而CRISPRCHEANR是单个屏幕的最佳性能方法,或者是CN信息的最佳性能。此外,计时和AC-CHRONOS产生的最终数据集能够更好地概括已知的必需基因和非必需基因。结论:总的来说,我们的调查根据其优势,劣势和实验环境,为选择最合适的偏见方法的选择提供了指导。
抽象的软骨肉瘤是软骨组织的主要癌症,能够改变高度侵略性,转移性和治疗难治性状态,导致预后较差,五年的生存率在11个月时进行了分化的亚型。目前,软骨肉瘤的手术切除是唯一有效的治疗方法,并且没有其他治疗选择,包括靶向疗法,常规化学疗法或免疫疗法,可用于这些患者。在这里,我们确定了涉及EZH2/SULF1/CMEM轴的信号途径,该方法有助于软骨肉瘤的恶性肿瘤,并为该疾病提供了潜在的治疗选择。一种非偏置的染色质免疫沉淀序列,cDNA微阵列分析和软骨肉瘤细胞系的验证,鉴定出硫酸酶1(SULF1)是最高的EZH2靶向基因,以调节软骨肉瘤的进展。过表达的EZH2导致软骨肉瘤细胞系中的Sulf1下调,这又激活了CMET途径。对CMET或遗传沉默的CMET途径的药物抑制显着降低了软骨肉瘤的生长并扩展了小鼠的存活。 在软骨肉瘤的患者样品中,进一步验证了EZH2/ SULF1/ CMET轴的调节。 结果不仅建立了促进软骨肉瘤恶性肿瘤的信号途径,而且还为进一步开发有效的靶向治疗治疗软骨肉瘤提供了挑战潜力。对CMET或遗传沉默的CMET途径的药物抑制显着降低了软骨肉瘤的生长并扩展了小鼠的存活。在软骨肉瘤的患者样品中,进一步验证了EZH2/ SULF1/ CMET轴的调节。结果不仅建立了促进软骨肉瘤恶性肿瘤的信号途径,而且还为进一步开发有效的靶向治疗治疗软骨肉瘤提供了挑战潜力。
p29。Isabelle Becker Megakaryocytes通过Rhoa Boston儿童医院和哈佛医学院P30的下游分泌自噬释放TGFβ1。Joyeeta Chakraborty化学基因植物,以定义Runx介导的转录调节电路Albert Einstein医学院P31。SETBP1中的Samantha Tauchmann突变增加了粒细胞谱系的输出,并激活与增殖相关基因骑士癌症研究所p32的转录。estelle carminita骨髓重塑和促炎性巨核细胞在波士顿儿童医院P33的慢性肾脏病鼠模型中。Nadia Carlesso上调造血干细胞中应力反应途径和镰状细胞疾病中的骨髓生态位。贝克曼研究所P34。sanika gupte中性粒细胞衍生的Sema4a是一种非细胞自动构成的骨髓骨膜自动调节剂,可保留髓样偏置的HSC的干性。弗雷德·哈钦森癌症研究中心P35。Daniel E. Kennedy DNMT3A功能丧失突变会损害感染期间贝勒医学院p36期间免疫记忆和先天细胞效应功能的发展。Alana M. Franceski芯片相关的外在因素,塑造健康的造血干细胞O'Neal综合癌症中心p37。Emily Tsao通过STAU1损失的转录后调节有助于DEL(20q)无序的造血性造血中心玛格丽特玛格丽特癌症中心和多伦多大学P38的造血细胞分化缺陷。patrick Stelmach突变特异性表型DNMT3A突变干细胞在克隆造血中心德国癌症研究中心Alexander Marr BRD4抑制作用在TET2突变的克隆造血的鼠模型中消除了炎症和自我更新。Alexander Marr BRD4抑制作用在TET2突变的克隆造血的鼠模型中消除了炎症和自我更新。
2。ICREA,加泰罗尼亚研究与高级研究机构巴塞罗那,西班牙10号加泰罗尼亚。11 12 *这些作者对这项工作也同样贡献13#铅接触:alejo.rodriguez-fraticelli@irbbarcelona.org 14 15摘要:16 17癌细胞,即使患有相同18个突变的患者,癌细胞也显示出广泛的表型变化。原始细胞的差异提供了潜在的解释,但是这些19种测定在传统上依赖于表面标记,缺乏克隆分辨率来区分20个茎和祖细胞的异质子集。为了应对这一21个挑战,我们开发了Strack,这是一个无偏的框架,纵向追踪22个克隆基因表达和膨胀动力学,并在获得23个癌症突变之前和之后。我们研究了两个不同的白血病驱动突变,即DNMT3A-24 R882H和NPM1CA,发现对这两种突变的响应在不同的干细胞状态下均为25个变量。具体而言,通常随时间越来越多的分化26个偏置干细胞可以有效地随两个突变扩展27。npm1c突变令人惊讶地逆转了克隆蛋白的内在偏置28,茎偏置的克隆会引起更加成熟的恶性29个州。我们提出了一个克隆的“反应规范”,其中预先存在的克隆状态30决定了不同的癌症表型潜力。31 32关键字:单细胞,癌症开始,原始细胞,谱系跟踪,DNMT3A,33 NPM1C,克隆造血症,髓样恶性肿瘤34 35 36亮点:37-单细胞在克隆级别的癌症开始(strack)。43 4438-离体扩展文化维持内在和可遗传的HSC异质性。39-预启示性突变增强了高输出干细胞的自我更新,40增加了其生存概率。41-转化突变重编程低输出干细胞命运到更成熟的42个恶性状态。
单畴(永久取向的“单晶”)液晶驱动通常是获得人造软材料类似肌肉驱动的关键方案。[1–3] 然而,由于聚合物弹性体的各向同性,这种物理上偏置的分子结构的需求给经典的合成聚合物弹性体带来了技术挑战。1991 年,Finkelmann 等人 [8] 引入了一种两阶段氢化硅烷化方法,并报道了第一个成功的具有独立驱动功能的“向列液晶单晶弹性体”。在这种方法中,其本质一直是随后二十年制造单畴液晶驱动的首选方案,对轻度交联的凝胶施加单轴机械延伸,以建立内部单轴取向场,然后进行进一步(第二阶段)固化以永久固定该取向。然而,这种方法在实践中非常困难,因为半固化凝胶本身具有机械脆弱性,需要充分拉伸才能实现取向。这降低了液晶元件在不断扩展的变形和驱动应用中的可用性。为了实现更复杂的液晶取向模式并规避分阶段固化问题,人们开发了其他基于外部场的技术,特别是表面取向 [9–12] 和动态键交换。[13–20] 基板的多样化像素定义表面使驱动模式的扩展成为可能,而不仅仅是简单的收缩-伸展。尽管进行了功能化,但材料的规模仍然受到特定基板的限制,并且表面穿透液晶元件本体的深度有限,使得该方法在技术上不足以进行大规模制造。因此,对于通用且灵活的液晶元件制造,机械拉伸仍然是生产多功能功能形式的单畴液晶元件的最简单策略。例如,鉴于聚合物纤维加工方法的成熟,这在编织纤维中尤为突出。人们希望有除氢化硅烷化之外的新化学方法,以便进行稳健的反应和方便的机械排列方式。近年来,二丙烯酸酯反应性液晶原(如 RM257 和 RM82)的商业化供应已成为 LCE 领域的强大推动力,考虑到涉及二丙烯酸酯的一系列良性反应,它提供了一种令人满意的替代方案。特别是,
主题代码主题名称L-T-P CRORC 22101设备建模3-0-0 3模块1(13小时)半导体表面,理想的MOS结构,MOS设备,热平衡中的MOS设备,非理想的MOS:工作函数差异,氧化物中的电荷,氧化物,界面状态,界面状态,非理想的MOS,flate traptage thatbage,flattage thatbage thatbage thatbage thatbage thatbage thatbage thatbage thatbage thatbage coldection a MOS,电荷计算(计算),计算,计算,计算,计算,计算,计算,计算,计算,计算,计算,计算电压,MOS作为电容器(2个端子设备),三个端子MOS,对阈值电压的影响。模块2(10小时)MOSFET(增强和耗尽的MOSFET),活动性,对当前特征,当前特征,亚刺孔摇摆,界面状态对子阈值的影响对子阈值的影响,排水电导和跨导电,源偏置的影响,源偏置和身体偏置对阈值电压和设备操作。模块3(6小时)缩放,短通道和狭窄的通道效应 - 高场效应。模块4(5小时)MOS晶体管在动态操作中,大信号建模,低频率和高频的小信号模型。模块5(8小时)SOI概念,PD SOI,FD SOI及其特征,SOI MOSFET,多门SOI MOSFET的阈值电压,替代MOS结构。参考:1。E.H. Nicollian,J。R. Brews,《金属氧化物半导体 - 物理与技术》,John Wiley and Sons。 2。 Nandita Das Guptha,Amitava Das Guptha,半导体设备建模和技术,Prentice Hall印度3. Jean- Pierrie Colinge,硅启用技术:VLSI的材料,Kluwer学术出版商集团。 4。 Yannis Tsividis,MOS晶体管的操作和建模,牛津大学出版社。E.H. Nicollian,J。R. Brews,《金属氧化物半导体 - 物理与技术》,John Wiley and Sons。2。Nandita Das Guptha,Amitava Das Guptha,半导体设备建模和技术,Prentice Hall印度3.Jean- Pierrie Colinge,硅启用技术:VLSI的材料,Kluwer学术出版商集团。4。Yannis Tsividis,MOS晶体管的操作和建模,牛津大学出版社。5。M.S.Tyagi,《半导体材料和设备简介》,John Wiley&Sons,ISBN:9971-51-316-1。
词汇表双极晶体管 - 用来表示共同的两种连接晶体管类型(NPN,PNP)的术语,而不是磁场效应的设备(JFET,MOSFET等)。BLEEDER - 电源的输出或过滤器上的电阻负载,旨在一旦供应关闭,旨在快速排放存储的能量。c速率 - 电池的充电率,表示为电池的安培小时等级。圆形MILS-表达圆形导体的横截面区域的便利方式。通过将直径平方(千分之一英寸)的直径平方,而不是将其半径和乘以Pi乘,可以找到圆形MILS的面积。例如,10口线的直径为101.9 mils(0.1019英寸)。其横截面区域为10380厘米,或0.008155平方英寸。核心饱和度(磁) - 变压器或电感器芯中的磁通量超过核心所能处理的条件。如果强迫通量超出这一点,则核心的渗透性将减小,并且将接近空气的渗透性。撬棍 - 许多电源中包含的最后一个式保护电路,以保护负载设备免受供应中调节器故障的影响。撬棍会在供应的输出上感觉到过电压,并发射短路设备(通常是SCR),以直接缩短电源的输出并保护负载。这会导致电源很高的电流,这会吹出电源的输入线保险丝。这对的有效电流增益大约是两个设备各个收益的乘积。达灵顿晶体管 - 一个情况下有两个晶体管的包装,收藏家绑在一起,一个晶体管的发射极与另一个晶体管相连。DC-DC转换器 - 将直流源电压更改为AC的电路,将其转换为另一个级别,然后对输出进行整流以产生直流电。快速恢复整流器 - 专门掺杂的整流器二极管,旨在最大程度地减少停止传导所需的时间时,当二极管从向前偏置的状态切换到反向偏置状态时。折叠式电流限制 - 线性电源中使用的一种特殊类型的电流限制类型,在短期电路负载条件下,通过电源调节器将电流降低到低值,以保护系列通过晶体管免受过量功率耗散和可能的破坏。地面故障(电路)截止器(GFI或GFCI) - 在房屋之间安装的安全装置 - 持有电源的电源和设备,那里有人员触摸地面地面的危险,而
我们开发了针对SARS-COV-2的全球肽疫苗,该疫苗解决了不同个体的免疫反应中异质性的双重挑战以及感染病毒的潜在异质性。polypepi-SCOV-2是一种多肽疫苗,其中含有从SARS-COV-2的所有主要结构蛋白中得出的9个30-MER肽。疫苗肽是根据其频率作为HLA I类和II类个人表位(PEPIS)的频率选择的,仅限于个体的多个自体HLA等位基因,以不同种族的433名受试者的硅群中。polypepi-SCOV-2疫苗用山烷基ISA 51VG辅助剂量产生的鲁棒,Th1偏置的CD8 +和CD4 + T细胞反应,针对病毒的所有四种结构蛋白,以及在BALB/C/C和CD34 + Transgenic Mice中的抗生素上的所有四种结构蛋白。此外,在症状发作后1-5个月,在17个无症状/轻度Covid-19康复研究中,在17个无症状/轻度COVID-19康复研究中,在17个无症状/轻度Covid-19康复研究中检测到多功能CD8 +和CD4 + T细胞的多功能CD8 +和CD4 + T细胞。用于从Covid-19中恢复的polypepi-Scov-2特异性T细胞库非常多样化:供体平均具有7种不同的肽特异性T细胞,针对SARS-COV-2蛋白;有87%的捐助者对至少三个SARS-COV-2蛋白有多个目标,而对所有四个蛋白质的目标为53%。此外,还基于康复供体的完整HLA I类基因型确定的PEPIS以84%的精度进行了验证,以预测为个体测量的PEPI特异性CD8 + T细胞反应。将上述发现外推向美国的骨髓供体队列16,000个具有16个不同种族的基因型个体(每个种族n = 1,000个种族)表明,普雷比皮 - scov-2疫苗接种polypepi-scov-2疫苗接种一般人群中的polypepi-scov-2 (bame)队列。将上述发现外推向美国的骨髓供体队列16,000个具有16个不同种族的基因型个体(每个种族n = 1,000个种族)表明,普雷比皮 - scov-2疫苗接种polypepi-scov-2疫苗接种一般人群中的polypepi-scov-2 (bame)队列。
1。Alexandre Gramfort,Martin Luessi,Eric Larson,Deni A. Engemann,Strohmeier Daniel,Christian Brodbeck,Roman Goj,Mainak Jas,Brooks,Lauri和Matti S.任何Python的Mne-Python。神经科学的前线,7(267):1-13,2013。2。Cabanero-Gome,L.,Hervas,R.,Constance,I。和Rodrig-Benite,L。(2021)。eglib:用于EEG提取的Python模块。3。 Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。 (2018)。 skikit-optimize:v0。 5.2。 版本V0,5 4。 Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。3。Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。(2018)。skikit-optimize:v0。5.2。版本V0,5 4。Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Joel,D。,Berman,Z(2015)。人脑。112(50),15468-15473。5。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y.(2017)。LightGBM:高速公路激动人心的梯度。神经信息系统的进步,30,3146–3154 6。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。超越二元类别的性别:对不同差异,心理病理学和基因型的检查。Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Sychiatry Academy,58(8),787-798。7。TOOLE,JM和BOYLAN,G。B.(2017)。neral:新生儿脑电图的定量特征使用matlab。ARXIV预印型ARXIV:1704.05694。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。 在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。 Neuroimage,55(4),1548-1565。 8。 Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。Neuroimage,55(4),1548-1565。8。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。功能连通性预测性别:静止大脑连通性中性别差异的证据。人类脑图,39(4),1765-1776。
基于石墨烯的样品显示量子厅制度1-16中的相关阶段丰富。奇数和均匀的分数量子霍尔状态,在涉及石墨烯 - 己酮氮化硼的样品中已经实现了分数Chern绝缘子。同样感兴趣的是双层样品中的现场诱导的激子冷凝物。已经指出,AB堆叠(Bernal)双层石墨烯(BLG)系统具有方便的参数,可以通过实验调整:除了电子密度和外部施加的磁力纤维外,还可以进行实验调整。由于几个量子数的结合,BLG的中央兰道水平具有将近八倍的变性:普通旋转,山谷的自由度和轨道退化。这些级别中排序的模式是非常丰富而复杂的。已经表明,分数量子霍尔状态17中存在可调相变。电偏置直接控制轨道水平之间的分裂和电子之间的库仑相互作用也受到外部施加磁场的值以及偏置的影响。对整数量子厅状态进行了详细研究,已在这些系统18上进行,并表明适当的紧密结合模型可以捕获水平顺序。最近的进步导致观察到许多分数状态以及它们之间的过渡。这意味着我们可以使用一个物理系统,在该系统中,我们可以调节参数影响分数量子霍尔物理学19-27。在GAAS中的二维电子系统中,众所周知,不可压力的电子液体与电子晶体(所谓的Wigner晶体)之间存在竞争。对于最低的Landau水平的填充因子ν= 1 /3,具有库仑相互作用的电子系统的基态是一种不可压缩的液体,其特性由Laughlin波函数28很好地描述,仅针对小小的细小因素,即基态状态为晶体状态29。确定这些阶段之间的精确边界已证明了困难的问题30。晶体状态在降低温度时以纵向电阻的不同而显示为绝缘状态。当一个降低填充因子时,有实验证据是Wigner晶体重新进入的实验证据。晶体状态的研究很困难,因为破坏了分数量子霍尔液体所需的磁场值很大。晶体状态不是唯一与液态的竞争者。在较高的Landau水平上,已知电子系统还可能形成所谓的条纹或气泡相。作为Wigner Crystal,这种状态破坏了翻译对称性,并且认为它们处于截然不同的物质状态而没有拓扑顺序。他们的实验特征是具有其他各向异性特性的绝缘行为。我们注意到,在二维GAAS电子或孔系统中31–35在几个多体基础状态之间存在丰富的竞争,并且可以通过调谐门电位在1/3处稳定Wigner晶体。石墨烯系统是研究此类竞争阶段的另一个领域,特别是由于其可调性,AB堆叠了双层石墨烯。也已经知道,与较高的Landau水平混合会使竞争偏向Wigner Crystal状态。调整BLG系统以获得n = 0和n = 1特征的Landau水平的退化,可以看作是Landau级别混合的极端例子,尽管没有n>1。因此,可以调整Laughlin State和Wigner Crystal之间的竞争是合理的。在本文中,我们研究了对填充因子ν= 1 /3和ν= 2 /3发生的不可压缩量子霍尔的状态,当系统完全山谷以及在AB堆叠的双层石墨烯系统中旋转极化。有趣的物理学现在是从轨道特征n = 0和n = 1的水平的穿越中出现的。根据目前对级别订购的知识,这应该发生在接近ν= - 3的载荷的中心八位。电子形成一个有效的两个组件系统,具有可调的各向异性相互作用。