超冷极性分子在量子模拟、计量和信息处理方面具有巨大潜力,因为它们具有强电偶极 (ED) 相互作用,这种相互作用既长距离,又各向异性,更重要的是,可调 [1 – 16] 。将它们用于这些目标的必要条件是能够利用其固有的 ED 相互作用来创建高度纠缠和长寿命的分子状态,这些状态对环境退相干具有鲁棒性,例如用于增强传感的自旋压缩态 [17 – 19] ,或用于基于测量的量子计算的簇状态 [20 – 25] 。到目前为止,简单的双碱分子(如 KRb)的旋转态已被提议作为编码量子比特的主要主力和自然自由度 [1 – 12] 。这是因为长寿命旋转态可以通过长程电致发光相互作用直接耦合,并由微波 (mw) 场操纵 [26,27] 。然而,旋转态具有重要的局限性,阻碍了它们用于纠缠生成:(1) 在不同旋转状态下制备的超冷分子通常会经历不同的捕获势,因此容易受到不良退相干的影响,导致相干时间短 [28 – 30] ; (2) 多体哈密顿参数的微调需要使用强大且控制良好的直流电场 E [1,11] 。由于这些场需要时间来切换和变化,因此使用旋转态之间的长程电致发光相互作用按需生成纠缠仍然是一项重大的实验挑战。为了克服这些重要的限制,我们在此提出利用超冷极性分子中可访问的更大的内部能级集,其中包括核和/或电子自旋能级以及它们的旋转结构。总的来说,这些能级可以用作按需纠缠生成的强大资源。通过将有效自旋-1 = 2 编码为一组核自旋和旋转分子能级,我们利用了长
扩张的超电气体很容易控制的系统,其从根本上通过截距相互作用确定。在具有超重气体的典型实验中,这些作用主要是短侧和各向同性的。近年来已经开始研究新一代的实验,在这种实验中,与长距离相互作用和各向异性二酚二波尔相互作用的其他相互作用起着重要甚至显着的作用。如果偶极气在光学网格中,二旋二波相互作用的古代摄入症引起的效果得到了显着理解。在这项工作中,研究了这种偶性气体系统中的光网格中发生的新现象。
被困的离子量表已证明了所有量子系统的最高量子操作。1-4因此,如果可以满足整合和扩展协会技术的挑战,则他们将有望成为可扩展的量子信息平台的候选人。这些挑战中的主要是,这种激光的整合不仅是冷却离子所需的,而且通常用于操纵Qubits。目前,正在提出两种主要方法。首先,如果可以将硅光子学中所示的功能扩展到与与原子离子量子量所需的可见和紫外线波长相兼容的材料,则可以提供可扩展的手段来传递必要的激光5,6。7秒,正在探索几种用于无激光处理原子量子A的方案,其中涉及与强静电磁场梯度配对的微波场,8-10 A Microwave磁场梯度,11-13微波磁场梯度,11-13微波磁场梯度梯度,14或接近Motiention Motional Mode频率。15,16集成光学和微波控制都需要在离子陷阱制造中的进步才能真正扩展。最近的提案17概述了第三个
宏观系统中的时间反转与日常经验相矛盾。仅通过时间反转导致杯子破碎的微观动力学,几乎不可能将破碎的杯子恢复到其原始状态。然而,借助现代量子技术提供的精确控制能力,量子系统的幺正演化可以随时间逆转。在这里,我们在原子气体中的里德堡态表示的偶极相互作用、孤立多体自旋系统中实施时间反转协议。通过改变编码自旋的状态,我们翻转了相互作用哈密顿量的符号,并通过让退磁多体状态随时间演化回磁化状态来展示磁化弛豫动力学的逆转。我们使用洛施密特回声的概念阐明了原子运动的作用。最后,通过将该方法与弗洛凯工程相结合,我们展示了具有不同对称性的大量自旋模型的时间反转。我们的状态转移方法适用于广泛的量子模拟平台,其应用范围远远超出量子多体物理学,涵盖从量子增强传感觉到量子信息扰乱。
1个国家主要光子学和仪器的主要实验室,Zju-hangzhou全球科学与技术创新中心,信息科学与电子工程学院,吉安格大学,杭州大学,杭州310027,中国和国际联合创新中心,Zhejiang University,Zhejiang University,Zhejiang University,Hainning Interventian Ginangion Interventical of Electricals Academy明尼苏达州明尼阿波利斯大学的工程,美国3美国3号高级/纳米电子设备和智人智能系统的钥匙实验室312000,中国4物理和数学科学学院物理和应用部,以及颠覆性光子技术中心,南南技术大学,新加坡637371,新加坡
引用本文: 解盘石, 杨航, 伍永平, 等 . 基于数字孪生的倾斜采场装备力学行为测控研究[J]. 煤炭科学技术 , 2024, 52(12): 259-271. XIE Panshi, YANG Hang, WU Yongping. Investigation into the monitoring and control of mechanical dynamics in inclined mining equipment utilizing digital twin technology[J]. Coal Science and Technology, 2024, 52(12): 259-271.
使用传统的电子偶极自旋共振 (EDSR) 实现自旋量子比特的高保真控制需要约 1 mTnm −1 的大磁场梯度(这也会将量子比特与电荷噪声耦合)和 1 mV 量级的大驱动幅度。翻转模式是驱动双量子点中电子 EDSR 的另一种方法,其中两个点之间的大位移提高了驱动效率。我们建议在强驱动范围内操作翻转模式,以充分利用两个点之间的磁场差异。在模拟中,降低的所需磁场梯度将电荷噪声的保真贡献抑制了两个数量级以上,同时提供高达 60 MHz 的拉比频率。然而,硅中导带的近简并引入了谷自由度,这会降低强驱动模式的性能。这就需要进行依赖于谷值的脉冲优化,并且使强驱动机制的操作变得值得怀疑。
我们通过在哈密顿量中加入极化项来研究超出偶极近似的封闭 n 级量子系统的控制景观。后者在控制场中是二次的。对奇异控制进行了理论分析,奇异控制是产生景观陷阱的候选对象。将考虑奇异控制存在的结果与偶极近似(即没有极化)中的结果进行了比较。在加入极化项后,对控制景观中陷阱的存在进行了数值分析,以产生超出偶极近似的幺正变换。通过创建许多随机哈密顿量(在单个控制场中包含线性和二次项),对这些控制景观进行了广泛的探索。发现的奇异控制都不是局部最优的。这一结果扩展了最近关于进行偶极近似的量子系统典型景观的大量研究。我们进一步研究了极化率的大小与优化产生的控制通量之间的关系。结果还表明,在原本不可控的偶极耦合系统中加入极化率项可以通过恢复可控性从相应的控制景观中移除陷阱。我们用数字方式评估了极化率项对特定三级 3 系统已知示例的影响,该系统的控制景观中有一个二阶陷阱。结果发现,极化率的增加会从景观中移除陷阱。讨论了这些模拟的一般实际控制含义。