超冷极性分子在量子模拟、计量和信息处理方面具有巨大潜力,因为它们具有强电偶极 (ED) 相互作用,这种相互作用既长距离,又各向异性,更重要的是,可调 [1 – 16] 。将它们用于这些目标的必要条件是能够利用其固有的 ED 相互作用来创建高度纠缠和长寿命的分子状态,这些状态对环境退相干具有鲁棒性,例如用于增强传感的自旋压缩态 [17 – 19] ,或用于基于测量的量子计算的簇状态 [20 – 25] 。到目前为止,简单的双碱分子(如 KRb)的旋转态已被提议作为编码量子比特的主要主力和自然自由度 [1 – 12] 。这是因为长寿命旋转态可以通过长程电致发光相互作用直接耦合,并由微波 (mw) 场操纵 [26,27] 。然而,旋转态具有重要的局限性,阻碍了它们用于纠缠生成:(1) 在不同旋转状态下制备的超冷分子通常会经历不同的捕获势,因此容易受到不良退相干的影响,导致相干时间短 [28 – 30] ; (2) 多体哈密顿参数的微调需要使用强大且控制良好的直流电场 E [1,11] 。由于这些场需要时间来切换和变化,因此使用旋转态之间的长程电致发光相互作用按需生成纠缠仍然是一项重大的实验挑战。为了克服这些重要的限制,我们在此提出利用超冷极性分子中可访问的更大的内部能级集,其中包括核和/或电子自旋能级以及它们的旋转结构。总的来说,这些能级可以用作按需纠缠生成的强大资源。通过将有效自旋-1 = 2 编码为一组核自旋和旋转分子能级,我们利用了长