摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
孟加拉,印度。摘要:DPP-IV是治疗2型糖尿病的主要目标。植物产品始终可用于各种疾病的可达到的潜在客户产生。在这篇综述中,我们试图涵盖许多自然来源,这些天然来源主要是由于DPP-IV的抑制作用。作为DPP-IV抑制剂,植物最有效的化学成分是白藜芦醇,叶黄素,阿apigenin和Flavone。现在一天,识别可以充当抗糖尿病剂的DPP-IV抑制剂非常重要。已经可用的合成抑制剂,如西他列汀,维尔迪格列汀,saxagliptin表现出令人难以置信的副作用。酚类化合物和类黄酮在许多功能性食品中都具有抗氧化特性。因此,研究人员试图发现作为DPP-IV抑制剂的铅产生的自然来源。关键词:活跃成分,糖尿病,DPP-IV抑制剂,DPP-IV,天然产品简介:糖尿病是一种疾病,涉及激素胰岛素问题。糖尿病是一种临床状况,其特征是血浆血糖的增加。通常,胰腺释放胰岛素来帮助您的身体储存并使用食物中的糖和脂肪,但在糖尿病中胰腺无法产生胰岛素,或者我们的身体无法利用胰岛素。1糖尿病是一种慢性干扰代谢中的慢性疾病,其特征是禁食和奶油后血糖水平升高。到2025年,预计将增加5.4%的糖尿病的全球优势。据估计,印度大约有3300万成年人患有糖尿病,到2025年将增加到5720万。I型糖尿病(胰岛素依赖性)是由于缺乏功能性β细胞而引起的。因此,患有I型I型患者的2例患者完全取决于胰岛素的外源性来源,而患有II型糖尿病(胰岛素独立性)的患者无法对胰岛素有反应,并且可以通过饮食,运动或药物的变化来治疗。
非环状羰基叶立德与偶极亲和剂的选择性 [3+2] 偶极环加成反应是一种非常有用的方法,可以合成具有复杂饱和度和取代基变化的五元氧杂环。1 此类环醚(四氢、二氢和呋喃)是许多生物活性天然产物和药物中发现的重要结构基序。2 不幸的是,虽然 [3+2] 环加成仍然是上述产品的可行方法,但 1,3- 偶极羰基叶立德在化学界尚未得到充分利用,原因是催化剂昂贵或无法在温和条件下有效生成叶立德中间体。3 为了解决这些缺点,我们的小组开发了一种有机光氧化还原方案,从二芳基环氧物生成羰基叶立德,该方案在与偶极亲和剂环化后产生环醚。然后将这些环醚用于经典的木脂素天然产物全合成(方案 1)。4 虽然我们的方法范围广泛,并有效地为该木脂素天然产物子类提供了统一的方法,但通过这种方法在环加成过程中实现区域选择性尚未实现。
摘要:我们利用单色异常校正的扫描透射电子显微镜的高空间和能量分辨率研究等离激元纳米棒的循环组件的杂交。详细的实验和模拟阐明了耦合的长轴偶极模式杂交到集体磁和电偶极等离子体等离子体共振。我们通过电子能量损失光谱法解决了这些封闭环的低聚物中的磁偶极模式,并确认具有其特征光谱图像的模式分配。随着多边形边缘的数量(n)的数量,磁模式的能量分裂和反管模式增加。在研究的N = 3-6个低聚物中,使用正常入射率和S偏斜的倾斜入射的光学模拟显示,在N = 4排列中,相应的电和磁模式的灭绝效率最大化。
薄层平面内各向异性材料可以支持超受限极化子,其波长取决于传播方向。此类极化子在探索基本材料特性和开发新型纳米光子器件方面具有潜力。然而,超受限平面内各向异性等离子体极化子 (PP) 的实空间观测一直难以实现,因为它们存在于比声子极化子更宽的光谱范围内。在这里,我们应用太赫兹纳米显微技术对单斜 Ag 2 Te 薄片中的平面内各向异性低能 PP 进行成像。通过将薄片置于 Au 层上方,将 PP 与其镜像混合,增加了方向相关的相对极化子传播长度和定向极化子限制。这允许验证动量空间中的线性色散和椭圆等频轮廓,从而揭示平面内各向异性声学太赫兹 PP。我们的工作展示了低对称性(单斜)晶体上的高对称性(椭圆)极化子,并展示了使用太赫兹 PP 对各向异性载流子质量和阻尼进行局部测量。
摘要。按需修改高迁移率二维 (2D) 材料的电子能带结构对于需要快速调整固态器件的电和光响应的各种应用具有重要意义。尽管已经提出了电可调超晶格 (SL) 势来设计石墨烯中狄拉克电子的能带结构,但设计可以与光混合的新兴准粒子激发的最终目标尚未实现。我们表明,单层石墨烯中一维 (1D) SL 势的极端调制会在费米面附近产生阶梯状电子能级,从而导致以子带间跃迁 (ISBT) 为主导的光学电导率。一个特定的、可通过实验实现的平台由位于 1D 周期性元栅极顶部的 hBN 封装石墨烯和第二个未图案化的栅极组成,可产生强烈调制的静电势。我们发现,具有大动量且垂直于调制方向的狄拉克电子通过静电势的全内反射进行波导,从而产生具有几乎等间距能级的平坦子带。表面等离子体与电控 ISBT 的预测超强耦合是产生可用光学探测的极化子准粒子的原因。我们的研究为探索具有栅极可调电子能带结构的二维材料中的极化子开辟了一条途径。
螺旋自旋结构是磁性诱导的手性的表达式,纠缠了材料1-4中的偶极和磁性。最近发现的螺旋范德华多表情到超薄限制,在二维5,6中提高了大手性磁电相关的前景。但是,到目前为止,这些耦合的确切性质和大小尚不清楚。在这里,我们对exfoliated van der waals多效率的对映射结构域的动力学磁电耦合进行精确测量。我们使用集体电磁模式在共振中评估了这种相互作用,并使用超快光学探针套件捕获了其振荡对材料偶极和磁性阶的影响。我们的数据显示,在Terahertz频率上具有巨大的自然光活性,其特征在于电化和磁化成分之间的正交调制。第一原理的计算进一步表明,这些手性耦合源于非共线自旋纹理与相对论自旋 - 轨相互作用之间的协同作用,从而使晶格介导的效应具有实质性增强。我们的发现突出了相互交织的订单的潜力,使其在二维极限内启用独特的功能,并为以Terahertz速度运行的范德华磁电机设备的开发铺平了道路。
摘要:偶极耦合多自旋系统具有用作分子量子比特的潜力。本文我们报告了一种分子多量子比特模型系统的合成,该系统具有三个可单独寻址、弱相互作用、自旋 1 = 2 中心,这些中心具有不同的 g 值。我们使用脉冲电子顺磁共振 (EPR) 技术来表征和分别处理各个电子自旋量子比特;Cu II、Cr 7 Ni 环和氮氧化物,以确定量子比特间偶极相互作用的强度。在 Cu II 光谱上检测的方向选择性弛豫诱导偶极调制增强 (os-RIDME) 揭示了强相关的 Cu II -Cr 7 Ni 环关系;对氮氧化物共振进行检测测量了氮氧化物和 Cu II 或氮氧化物和 Cr 7 Ni 环的相关性,并根据不同的弛豫动力学切换相互作用,这表明可以实现基于 EPR 的量子信息处理(QIP)算法。
• 物理学硕士学位 • 具有冷原子和量子气体实验中使用的实验技术实践经验,特别是激光和光学装置、真空技术、电子技术 • 冷却和捕获超冷原子以及量子气体显微镜的实验知识 • 具有物理系统数据分析和理论建模经验 • 了解一般量子系统的理论描述以及特定超冷偶极量子气体背景下的多体系统 • 优秀的口头和书面英语能力 • 能够在团队中工作并向社区展示科学成果 • 满足因斯布鲁克大学博士生的官方要求我们提供: • 在充满活力的环境中从事有趣的活动领域 • 弹性工作时间安排 • 有机会在创新团队中工作 • 为员工提供众多社会福利