人工神经网络(ANN)的连通性与在生物神经网络(BNN)中观察到的连通性不同。实际大脑的接线可以帮助改善ANNS体系结构吗?我们可以从ANN中了解哪些网络功能在解决任务时支持大脑中的计算?在连通性的中间/宏观级别上,ANN的体系结构经过精心设计,这些设计决策在许多最近的绩效改进中具有至关重要的重要性。另一方面,BNN在所有尺度上都表现出复杂的新兴连通性模式。在个人层面上,BNNS连接性是由脑发育和可塑性过程引起的,而在物种层面上,在进化过程中的自适应重新构造也起着主要作用,可以塑造连通性。近年来已经确定了无处不在的大脑连接性特征,但是它们在大脑执行具体计算的能力中的作用仍然很少了解。 计算神经科学研究仅揭示了特定的大脑连接性特征对抽象动力学特性的影响,尽管实际上几乎没有探索真实的大脑网络拓扑对机器学习或认知任务的影响。 在这里,我们提出了一项跨物种研究,采用混合方法整合了真实的大脑连接组和生物回声状态网络,我们用来求解具体的内存任务,从而使我们能够探究在求解任务解决方面的真实大脑连接模式的潜在计算模拟。 我们还提出了一个框架Bio2Art,以映射和扩展可以集成到经常性ANN中的真实连接组。无处不在的大脑连接性特征,但是它们在大脑执行具体计算的能力中的作用仍然很少了解。计算神经科学研究仅揭示了特定的大脑连接性特征对抽象动力学特性的影响,尽管实际上几乎没有探索真实的大脑网络拓扑对机器学习或认知任务的影响。在这里,我们提出了一项跨物种研究,采用混合方法整合了真实的大脑连接组和生物回声状态网络,我们用来求解具体的内存任务,从而使我们能够探究在求解任务解决方面的真实大脑连接模式的潜在计算模拟。我们还提出了一个框架Bio2Art,以映射和扩展可以集成到经常性ANN中的真实连接组。我们发现在物种和任务之间保持一致的结果,表明,如果允许最小的随机性和连接的多样性,则具有生物学启发的网络以及经典的回声状态网络的性能以及经典的回声状态网络。这种方法还使我们能够表明核次间连通模式多样性的重要性,强调了决定神经网络连通性的随机过程的重要性。
已经确定,评估矿床的储层特性的标准方法是在矿床开发的技术文档开发中积累不确定性的来源。这项工作旨在开发一种改进的方法来评估矿床的收集者特性。提议将动作算法添加到确定样品的代表性体积,构建其三维模型并进行数字化的阶段。在最后阶段,使用Minkowski函数确定样品内部孔的连通性,以提高存款开发的项目文档质量。指南来改善评估存款的收集者特性的标准方法。使用改进的方法来评估矿床的储层特性会导致不确定性的较低程度,并有助于在其开发的设计阶段形成更可靠的储层作战情况。提出的研究将对外国承包商公司的工程人员有用,因为它证明需要收集其他核心材料并设置有关存款收藏家财产的信息的质量标准。
摘要 — 我们提出了一种回声状态网络 (ESN) 的近似方法,该方法可以基于超维计算数学在数字硬件上有效实现。所提出的整数 ESN (intESN) 的储存器是一个仅包含 n 位整数的向量(其中 n < 8 通常足以获得令人满意的性能)。循环矩阵乘法被高效的循环移位运算取代。所提出的 intESN 方法已通过储存器计算中的典型任务进行验证:记忆输入序列、对时间序列进行分类以及学习动态过程。这种架构可显著提高内存占用和计算效率,同时将性能损失降至最低。在现场可编程门阵列上的实验证实,所提出的 intESN 方法比传统 ESN 更节能。
神经回路的连接模式形成一个复杂的网络。这些电路中的信号如何表现为复杂的认知和适应性行为仍然是神经科学中的核心问题。伴随连接组和人工智能的进步从根本上开放了新的机会,以了解连接模式如何影响生物脑网络中的计算能力。储层计算是一种多功能范式,它使用高维动力系统的非线性动力学来执行计算和近似认知功能。在这里我们提供Conn2Res:一种开源Python工具箱,用于实现生物神经网络作为人工神经网络。conn2res是模块化的,允许施加任意体系结构和任意动态。该工具箱允许研究人员输入使用多种技术重建的连接组,从图形跟踪到非侵入性扩散成像,并施加多个动力学系统,从简单的尖峰神经元到磁性动力学。CONN2RES工具箱的多功能性使我们能够在神经科学和人工智能的汇合处提出新问题。通过将函数重新概念化为计算,Conn2Res为对大脑网络中结构功能关系的更机械理解设定了阶段。
摘要。目标。在高风险职业工作的广泛专业人员中检测微渗,对工作场所的安全非常重要。提出了采用储层计算(RC)方法的微填充分类器。特定的回波状态网络(ESN)用于增强微观检测的先前基准性能。方法。使用了基于ESN的新型泄漏积分器进行聚类设计。这种设计的效果在于简单的性能,即使用细粒度的体系结构,其中包含每个群集多达8个神经元,以捕获个性化状态动力学并实现最佳性能。这是使用RC模型实施和评估基于EEG的微骨检测的第一项研究,以检测来自EEG的微渗。主要结果。使用级联的ESN分类器,具有泄漏的积体神经元,使用544个功率频谱特征的60个主要成分。这导致了φ= 0的性能中的一件受试者的平均检测。51±0。07(平均值±SE),AUC-ROC = 0。88±0。 03,AUC-pr = 0。 44±0。 09。 明显的能力。 尽管基于EEG的微质量检测系统的性能仍然被认为是适度的,但这种重新定义的方法在微质量检测中获得了新的基准测试。88±0。03,AUC-pr = 0。44±0。09。明显的能力。尽管基于EEG的微质量检测系统的性能仍然被认为是适度的,但这种重新定义的方法在微质量检测中获得了新的基准测试。
大脑电路涉及大量的反馈回路,其动力学取决于相互作用的延迟。脑启发的储层计算利用互连单元的丰富复发动力学来执行输入的任务。特别是,时间延迟储层计算使用非线性延迟反馈回路架构中的高维瞬态动力学,例如时间序列预测和语音分类。最近还证明,通过包含多个延迟的延迟分化系统的动态属性修改,以提高时间延迟储层计算的性能。在这里,我们探索了这种基本和技术重要性的这种神经启发的计算的另一个方面:在混合物中分离和预测两个信号的能力,在混合物中,每个信号由于其潜在的动力学而具有一些内在的可预测性。使用混沌输入信号混合物的多层和多层储层计算进行了说明。与独立的组件分析和相关的无监督学习技术相反,这里的上下文在于平行监督每个信号的动力学学习,以便在训练集之外预测每个信号的每个信号。此外,将混沌信号的超渗透到单个输入通道中增加了任务的难度。我们用确定性和随机系统发出的各种信号来量化和解释这种性能。此外,我们还探索了深度延迟储层计算机的体系结构。我们的发现表明,多延迟储层计算可以学习和预测两个叠加确定性信号的未来。预测(因此分离)在单层和多层时间延迟的预订计算中可能会明显更高。混合信号的带通滤波以除去较低和较高的频率,将预测提高了几%。在某些情况下,矛盾的是,增加混合物中一个混沌信号的比例实际上可以帮助学习另一个混乱信号,从而稍微改善其预测。
使用储能设备对于零能耗结构的开发和维护至关重要。它们是可再生能源的最佳利用和管理能源供应和需求的间歇性所必需的。许多不同类型的存储系统(电化学、热、机械等)要么已在商业上可用,要么即将开发用于建筑规模。不同的技术具有不同的功能和特性,因此在深入进行技术经济研究之前,找到一个评估您的可能性的系统非常重要。当前和新兴储能技术的所有方面,以及它们的用途、未来前景和历史背景,都将接受严格的评估。电化学和电池存储、热存储、热化学存储、飞轮存储、压缩空气存储、抽水蓄能、磁存储、化学和氢存储以及氧化还原流存储等储能技术都包括在内。还讨论了替代储能方法的新研究,以及该领域的重大进展和发现。
2.3 运行约束 储能电站的规划与运行决策存在强耦合关 系。在不同位置接入储能电站将对系统运行的安 全性、经济性与可靠性造成不同影响。为了支持网 侧储能选址定容方案的科学决策,需充分考虑储能 充放电特性、有功 / 无功综合潮流、电压偏移限制、供 电可靠性要求等关键因素,进行精细化的运行建 模。故引入运行约束如下。 2.3.1 功率平衡约束
hibit降低了渗透性,因此需要建立有效的地热系统(EGS)以利用深度地热能。在EGS中,用于液压压裂用于储层刺激,以人为增强的地热储层具有较高的渗透性。当前的深地热储量刺激技术主要是从石油和天然气部门采用的液压压裂过程中借来的,对刺激性能,地震风险控制和有效的地热储层的热萃取产生了限制。这项研究总结了深度地热能的液压压裂的特征:(1)剪切机理主导着断裂诱导的损伤。(2)冷水注入诱导的差分温度所产生的拉伸应力鼓励裂缝进一步传播。(3)连续的水注入使孔压力保持高于地层压力,从而为裂缝保持良好的条件保持开放。因此,EGS中的液压压裂不需要支撑剂。这与石油和天然气井的液压破裂完全不同,这在很大程度上依赖于支撑剂。此外,这项研究系统地分析了EGS的四个主要挑战:低发电能力,注入和生产井之间的连通性差,诱发破坏性地震的风险以及在没有补贴的情况下获得利润的困难。这项研究通过数值模拟研究了Regs的优势。根据创新的破裂和能量回收的各个方面,本研究提出了一种与能源存储相结合的创新增强的开发模式,称为再生工程的地热系统(REGS)。结果表明,与水平井以及不等的间距,区域和注射水的体积的多阶段分裂可以增强注入和生产井之间的连通性。破裂过程在Regs中进行了优化。具体来说,采用了多阶段裂纹。在每个阶段,早期的水注射率迅速增加,并在晚期逐渐下降。这可以防止在井眼压力下突然波动,从而控制诱发地震的幅度并防止破坏性地震。Regs整合了可再生能源的大规模地下存储,实现了多能补充并增强了Regs项目的生产寿命和盈利能力。这项研究的最终成员将为试点项目和标准化促进技术的标准化奠定基础,用于融合的热量和发电,与储能集成在一起,用于中国深地热能。