氢能储能系统间歇运行时的热氢平衡成为影响风氢混合系统(W-HHS)性能的关键因素。本文设计了一种包含余热利用的氢能储能系统(HESS),并建立了考虑氢气和热储的双荷电状态(SOC)模型。此外,基于分布稳健方法,提出了一种W-HHS的优化调度方法,以降低电网中常规机组的运行成本,增加W-HHS的收益。将前文提出的热氢平衡双SOC模型作为本次协同调度的约束。利用实际风电场数据集在IEEE 30节点系统上验证了双SOC模型的有效性和效率。结果表明,氢-热双SOC模型能够充分反映热氢平衡对W-HHS运行的影响。协同调度方法在保证热氢平衡的前提下提高了W-HHS运行的可靠性。当同时满足氢平衡SOC和热平衡SOC约束时,风电场可用功率比理想情况低6~8%。参数分析表明,降低散热系数可以减小热平衡SOC约束对调度策略的影响,提高风电场出力。当散热系数小于1/1200时,热平衡SOC约束失效。
摘要。可再生能源发电成本的下降,加上电解技术的进步,表明绿色氢气生产可能是正在进行的能源转型中的可行选择。然而,绿色氢经济不仅需要生产解决方案,还需要存储选项,而这已被证明具有挑战性。一种尚未得到充分探索的解决方案是在套管井或竖井中地下储存氢气 (H 2 )。它的集成将带来实施的多功能性和广泛的适用性,因为它不需要特定的地质背景。本文的目的是评估这种新存储技术的技术可行性。准确预测温度和压力变化对于设计、材料选择和安全原因至关重要。这项工作使用基于质量和能量守恒方程的数值模型来模拟套管井中的储氢操作。研究表明,腔壁处的传热强烈影响温度和压力变化。这种影响因钻孔的几何形状提供显着的接触面积而加剧。因此,这种技术可以缓解极端压力和温度变化,并且在给定压力约束的情况下产生比传统洞穴更高的氢密度。结果表明,半径为 0.2 m 时,在最大压力为 50 MPa 时可达到 30 kg m − 3 的氢密度。在 4 小时内注入时,系统在最高温度和压力方面的响应相对线性,但随着注入时间的缩短,系统很快变为非线性。优化初始存储条件似乎对于最大限度地降低冷却成本和最大限度地提高存储质量至关重要。
7.1.1.霍维阿油田...................................................................................................................... 32 7.1.2。蒙达拉气田...................................................................................................................... 33 7.1.3。 Beharra Springs 气田...................................................................................................................... 33 7.1.4。 Redback气田...................................................................................................................... 34 7.1.5。塔兰图拉毒气田...................................................................................................................... 35 7.1.6。 Tubridgi 气田...................................................................................................................... 36 7.1.7。 Xyris 气田...................................................................................................................... 37 7.1.8。亚达里诺气田...................................................................................................................... 38 7.1.9。芹菜气田...................................................................................................................... 39 7.1.10。 Gingin气田...................................................................................................................... 40 7.1.11. Red Gully 气田 ................................................................................................................................ 41 7.1.12. Mount Horner 油田 ................................................................................................................ 41 7.1.13. Dongara 气田 ............................................................................................................................ 42
– 展示了单点 Pt/CeO 2 催化剂,该催化剂对 MeOH 和其他醇的脱氢速度比 2.5 纳米 Pt/CeO 2 快 40 倍,比负载 7 纳米 Pt 簇的 CeO 2 快 800 倍 – 展示了多孔液体作为气体吸附剂的可行性和效率 – 展示了来自多个系统的氢化物中氢解吸的等离子体活化 – 甲酸在 Pd 催化剂上的脱氢:确定对表面和环境的敏感性 – 扩展了 H 2 载体技术经济分析过程的能力,允许将基于材料的存储系统与现有技术进行比较• 特性
在发达国家,最大的担忧之一是由于经济的快速增长,能源需求与非可再生能源 (NRS) 生产之间的差距越来越大。除此之外,二氧化碳排放造成的环境污染和气候变化是另一个必须处理的真正危险 [1 和 3]。因此,对 NRS 的依赖应该转向更清洁、更高效的可再生能源。在不同的可用选择中,氢 (H2) 因其丰富的可用性、环境友好性以及最大的能量密度而引人注目,因此氢 (H2) 具备成为优秀能源载体的所有能力 [4 和 16]。尽管有这些优点,但将 H2 用作可再生能源仍存在一些技术难题 [17]。主要的技术挑战是找到一种良好的储存方法。虽然可以使用液化和加压存储氢气,但由于价格昂贵和安全问题,其使用受到限制 [18,19]。基于材料的储氢是近年来使用的另一项革命性技术,但找到更好的候选材料也是一项挑战 [20]。二维材料凭借其独特的物理和化学性质,带来了材料科学的新时代 [21]。自石墨烯成功研制后,人们对二维材料产生了浓厚的兴趣 [22],石墨烯实际上是一个碳原子的单层,具有非常有趣的特性 [23,24]。然而,石墨烯具有有利可图的特性,但由于缺乏带隙,限制了它在多个技术领域的应用 [25]。这启发了研究人员去研究除石墨烯之外的具有固有带隙的二维材料。由于其迷人且具有技术价值的特性,2D 材料可在许多方面得到应用,例如太阳能电池[26 e 28]、气体传感材料[29 e 31]、光电探测器[32]、电池应用[33]等等。更有趣的是,最近的一些研究表明,H 2 可以储存在 2D 材料中。然而,美国能源部建议的条件和标准,例如储存能力、大气条件下氢的吸附和解吸是一项具有挑战性的工作[34 e 39]。基于硼的材料,例如硼烷[40,41]、硼墨烯[42,43]、氮化硼[44],由于其大的表面积和形貌,已被观察到有效的 H 2 存储介质。虽然不含硼的材料如氮化镓[45]、硅烯[46]、锗烯[47]、二硫化钼[48]、磷烯[49]、石墨烯[50 e 52]和单壁碳纳米管[53,54]以及其他单层材料[55 e 59]也被发现是很有前途的储氢材料。近年来,硫化镓(GaS)单层中发现了一些新特性,如高热导率 [ 60 ] 是一种很有前途的氢气析出材料
GRZ Technologies 的愿景是让世界由可再生能源驱动——无论白天还是黑夜,无论夏天还是冬天。为了实现这一目标,我们必须用安全、经济高效且可持续的能源解决方案取代化石能源系统,而氢气是其中重要的能源载体。引入新的环保能源系统是一项全球挑战。跨国家和跨大洲的合作至关重要。因此,GRZ 与全球各地的组织合作,共同应对这些全球挑战。我们的合作伙伴包括现代汽车公司、菲舍尔集团、AMPO、萨班哲、Susten、Auto AG、Gaznat 和梅塞尔天然气等。
摘要:使用氢作为能源在全球越来越受欢迎。与其他传统能源相比,氢可以有效地生产和利用。然而,氢存储技术难度大,制约了氢能在全球范围内的大规模应用。氢可以以液相形式储存,以化学方式保存和保留在共价或离子化合物中,在气瓶中,在具有大比表面积的材料上,以及在水中活性金属的氧化物中。然而,上述每种储氢方法都有其缺陷和技术难点。含水层、枯竭的天然气和石油储备以及盐穴都是将氢物理地储存在地下的方法和方法的例子。这些地方通常是大规模储氢的地方。如果能够解决这个问题,并克服氢存储的挑战,那么对于整个人类来说将是一个巨大的进步,因为氢是一种非常有前途的未来能源。
氢 PTP 是一种有前途但尚未成熟的储能技术,其在能源供应领域的作用尚不确定。氢 PTP 仍有几个限制和问题需要解决。本文的研究目的在于开发一种成本分析工具,尝试解答长期大规模使用氢存储的问题,该工具将在未来得到完善,并可用于研究氢存储技术发展过程中的经济影响。