摘要 - 次数是最敏捷的飞行机器人之一。尽管在基于学习的控制和计算机视觉方面取得了进步,但自动无人机仍然依赖于明确的状态估计。另一方面,人类飞行员仅依靠从板载摄像头的第一人称视频流将平台推向极限,并在看不见的环境中坚固地飞行。据我们所知,我们提出了第一个基于视觉的四摩托系统,该系统自动浏览高速的一系列门,而直接映射像素以控制命令。像专业的无人机赛车飞行员一样,我们的系统不使用明确的状态估计,并利用人类使用的相同控制命令(集体推力和身体速率)。我们以高达40 km/h的速度展示敏捷飞行,加速度高达2 g。这是通过强化学习(RL)的基于识别的政策来实现的。使用不对称的参与者批评,可以促进培训,并获得特权信息。为了克服基于图像的RL训练期间的计算复杂性,我们将门的内边缘用作传感器抽象。可以在训练过程中模拟这种简单但坚固的与任务相关的表示,而无需渲染图像。在部署过程中,使用基于Swin-Transformer的门检测器。我们的方法可实现具有标准,现成的硬件的自动敏捷飞行。尽管我们的演示侧重于无人机赛车,但我们认为我们的方法超出了无人机赛车的影响,可以作为对结构化环境中现实世界应用的未来研究的基础。
LED 灯带对从哪一侧接收电源没有要求,只要求接收数据。如果情况真的需要,您可以在灯带的输出端连接电池组(如果使用二极管,则带二极管)然后从输入端的 + 和 - 连接为 Arduino 供电(以及串行数据和时钟信号)。但是不建议这样做,因为电压会沿着灯带的长度略有下降,并且 Arduino(应该运行所有功能)会在电池耗尽时更快耗尽。在靠近电池的地方为 Arduino 供电可确保电压正常,从而尽可能长时间保持控制。
https://upload.wikimedia.org/wikipedia/commons/6/62/CERN_LHC_Proton_Source.JPG https://cdn.zmescience.com/wp-content/uploads/2015/05/cern-lhc-aerial.jpg H t tp://sites.uci.edu/energyobserver/files/2012/11/lhc-aerial.jpg
本文介绍了用于实施多播带通滤波器的紧凑拓扑。设计使用互连的多模谐振器(MMR)和多级阻抗结构来实现特定的频率响应。这种方法简化了针对4G和5G应用的四倍带通滤波器的设计。由于无法调整线路宽度后的构建后,共振位置需要调整。为了评估滤波器设计过程,尽管未在设计阶段进行模拟或优化,但设计,制造和分析了包含MMR的原型,并证明了分析预测和实验测量之间的紧密比对。此外,建立了设计标准,以通过仅改变MMR的几何参数来促进多频道响应的快速合成。使用CST软件对此结构进行了模拟,以确认所提出的理论的准确性。一种反向偏置的变量二极管,该变量二极管用作具有特定入学的电容器,可用于提供必要的调谐能力。本文还突出了变量二极管的接收对共振位置调整的影响。为了验证设计,作者提出了拟议过滤器的制造原型,该原型的特征是1.8、2.1、2.7和3.4 GHz的四分之一频段,达到了大于-15 dB的衰减。四分之一频段过滤器主要用于无线电信网络。由于其专门设计,这些过滤器可以同时处理多个频段,从而提高通信质量并增加拥挤和干扰的环境中的网络容量。
1。参与者必须是当前注册的4-H成员,并且在进入之前在Zsuite中具有“活跃”状态。2。年龄段:年龄段由当前4-H年9月1日的参与者等级确定,如下所示:初中:3,4,5年级,必须至少8岁;中级:6、7或8年级;高年级,9、10、11或12年级。参与者的条目将使用随附的评论标题来判断,并有资格获得蓝色,红色或白色丝带。可以根据比赛和可用性授予奖品。3。年轻人必须作为个人进入,并且可能不会在团队中工作。4。4-H成员的原始工作:所有条目必须是参与4-H会员的原始作品,并在当前4-H年(9月至8月)中创建。参与者可以仅提交每个类别的条目进行判断。5。条目的格式:条目必须在.jpeg,.jpg,.png或pdf格式中。6。条目必须遵循条目要求列出的指南(请参见上文)。7。显示和将来的使用权:通过提交比赛的条目,4-H会员授予Weber County 4-H和USU扩展,并扩展了与在促销出版物和其他媒体中使用摄影相关性相关的使用和权利,而无需赔偿。某些条目可用于4-H计划和营销用途。8。发布:要求每个参与者都有足够的许可,同时授予艺术家和犹他州4-H,以根据需要出版和使用任何可识别的位置或拍摄的人。9。应由参与者保留文档,并应4-H青年发展计划的要求提供。条目应在像素化比赛中通过Zsuite提交。
摘要:随着对沉浸式体验的需求的增长,显示器的大小和更高的分辨率越来越接近眼睛。但是,缩小像素发射器降低了强度,使其更难感知。电子纸利用环境光进行可见性,无论像素大小如何,都可以保持光学对比度,但无法实现高分辨率。我们显示了由WO 3纳米散件组成的大小至〜560 nm的电气可调节元像素,当显示大小与瞳孔直径匹配时,可以在视网膜上进行一对一的像素 - 示波器映射,我们将其称为视网膜电子纸。我们的技术还支持视频显示(25 Hz),高反射率(〜80%)和光学对比度(〜50%),这将有助于创建最终的虚拟现实显示。主要文本:从电影屏幕和电视到智能手机以及虚拟现实(VR)耳机,显示器逐渐越来越靠近人眼,具有较小的尺寸和更高的分辨率。随着展示技术的进步,出现了一个基本问题:显示大小和分辨率的最终限制是什么?如图1a,为了获得最沉浸和最佳的视觉体验,该显示应与人瞳孔的尺寸紧密匹配,每个像素与视网膜中的光感受器单元相对应。人类视网膜包含约1.2亿光感受器细胞。假设瞳孔直径为8毫米,理想的像素大小为〜650 nm,导致分辨率约为每英寸40,000像素(PPI)。随着像素尺寸收缩,主流发射显示器正在接近其物理极限。这个理论像素大小接近人眼的分辨率极限,代表了显示技术的最终边界,我们将其命名为“视网膜”显示。较小的像素尺寸降低了发射极尺寸,从而导致亮度显着下降,从而使它们越来越难以通过肉眼感知(1,2)。当前,市售的智能手机显示像素通常约为60×60μm²(〜450 ppi),比最终视网膜显示所需的理论尺寸大约10,000倍。已经在这个规模上,肉眼很难感知,尤其是在
到达时间(秒) XY TPX3 0.00405912969 56 239 TPX3 0.00405912969 0 214 TPX3 0.00405912969 121 163 TPX3 0.00405912656 68 145 TDC 0.00405912655 - - TPX3 0.00405920938 133 197 TPX3 0.00405912500 32 98 TXP3 0.00405956094 12 228 TDC 0.00405956096 - -
在此处给出了完整的确认部分:致谢:这项工作得到了中国国家自然科学基金会(No.62227801和No.UME20B2062,No.62376024)的支持,以及中国国家关键研究与发展计划(20222ZD0117900)。
在蒙版的图像建模(MIM)中,存在两个主要方法:像素MIM和潜在MIM,每个方法分别利用不同的重建目标,原始像素和潜在表示。Pixel Mim倾向于捕获低级视觉细节,例如颜色和纹理,而潜在MIM专注于对象的高级语义。但是,每种方法的这些独特的优势可以导致依赖特定视觉特征的任务中的次优性能。为了解决这一限制,我们提出了Pilamim,这是一个统一的框架,结合了像素MIM和潜在MIM以整合其互补优势。我们的方法使用单个编码器以及两个不同的解码器:一个用于预测像素值,另一种用于潜在表示,可确保捕获高级和低级视觉特征。我们将[Cls]令牌进一步集成到重建过程中,以汇总全局上下文,从而使模型能够捕获更多的语义信息。广泛的实验表明,在大多数情况下,Pilamim优于MAE,I-JEPA和BOOTMAE等关键基线,证明了其在提取更丰富的视觉表示方面的有效性。该代码可在https://github.com/joonmy/pilamim.git上找到。