了解纳米级物质和过程的物理和化学对于所有科学学科都至关重要。先进材料和纳米技术都是跨学科研究领域,有机会跨不同研究领域进行合作并分享知识、工具和技术。先进材料和纳米技术国际跨学科硕士课程经过精心设计,为探索这些研究领域快速扩展的科学视野提供了途径,预计未来几十年将取得巨大进步。该课程的核心课程为该研究领域奠定了坚实的基础。随后,学生可以利用大量的选修课和在参与部门进行最后一年项目的选择。
Anthill Clay是普通土壤类型中一种独特的土壤/粘土类型,因为具有非凡的储存方法。小颗粒被带入并用一个被称为白蚁的小生物竖起并竖立了一个arthill。通常,粘土是工业应用的明显原材料,并且对高级材料应用的Anthill Clay的高速公司的测定是现有研究的前景。使用标准程序和仪器在物理和化学上对精心收集的arthill粘土样品进行了表征。研究了从8000°C以下的Anthill粘土中制备的砖的机械特性。作为现有原始粘土研究的主要结果,pH值的5.56,天然水分含量的15%,差距分级和对称分布的谷物排列,颗粒百分比(<0.075mm)(<0.075mm)(<0.075mm)(<0.075mm)(<0.075mm)(根据Fe,Ti,ba和k的组成,Ti,ba和k andiption compounts的重量,包括fe Miners consepts complate consects conseptions coptosition。此外,观察到相对于从原泥粘土制备的砖,观察到25%的吸水,2.62个体积比重,65%的特异性重力,65%的显而易见的孔隙率,21 MPa抗压强度和0.4 MPa分裂的拉伸强度。基于这种肛门粘土的行为,在工业目的(例如水处理,刚性材料,催化剂和折射剂)中,它应该是高级材料制造中的有影响力材料。
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
让·拉穆尔研究所 (IJL) 是材料科学领域的基础和应用研究实验室。它是法国国家科学研究院和洛林大学的联合单位 (UMR 7198),隶属于法国国家科学研究院化学研究所。它是一个多主题实验室,涵盖材料、冶金、纳米科学、等离子体、表面和电子学,以应对能源、环境、未来工业、移动性、资源保护和健康等社会挑战。其研究工作范围从材料设计到工业应用,由 25 个小组开展,分为四个科学部门和一个技术研究团队。它由八个技术平台和四个支持服务提供支持。IJL 主要位于法国南锡的阿尔乔姆校区。让拉穆尔研究所是欧洲最大的材料研究所之一,拥有包括实习生在内的多达六百名员工、一百五十家合作公司、每年发表三百篇经过同行评审的文章、每年三十二次论文答辩、在学术合作框架内与三十个国家建立合作。
作为“Fit for 55”计划的一部分,多项政策要求使用先进和废弃生物燃料。主要政策工具是可再生能源指令 (RED 或 REDIII),但 Fuel EU 和 ReFuel EU 法规也为这些生物燃料提供支持,特别是针对航运和航空。根据 RED 的附件 IX,先进和废弃生物燃料分为需要新型生物燃料技术的材料 (A 部分),例如林业残留物,以及成熟途径,例如废弃食用油和动物脂肪 (B 部分)。随着 REDIII 的增强,到 2030 年必须实现可再生氢衍生物和 A 部分生物燃料 5.5% 的新综合目标,这可能会引发对可能更便宜的 A 部分生物燃料的推动。另一方面,B 部分原料被限制为总运输能量的 1.7%。
将零件的电应力、热应力和机械应力限制在其规定或已证实的能力以下的水平的做法,以提供操作安全裕度并提高系统可靠性。大多数承包商已经制定了自己的内部降额做法,但直到最近,国防部 (DoD) 还没有标准做法。 RL
Acq O&M - 收购相关运营与维护 ACAT - 收购类别 ADM - 收购决策备忘录 APB - 收购计划基准 APPN - 拨款 APUC - 平均采购单位成本 $B - 十亿美元 BA - 预算授权/预算活动 Blk - 区块 BY - 基准年 CAPE - 成本评估与计划评估 CARD - 成本分析要求说明 CDD - 能力开发文件 CLIN - 合同项目编号 CPD - 能力生产文件 CY - 日历年 DAB - 国防收购委员会 DAE - 国防收购执行官 DAMIR - 国防收购管理信息检索 DoD - 国防部 DSN - 国防交换网络 EMD - 工程与制造开发 EVM - 挣值管理 FOC - 全面作战能力 FMS - 对外军售 FRP - 全速率生产 FY - 财政年度 FYDP - 未来年份国防计划 ICE - 独立成本估算 IOC - 初始作战能力Inc - 增量 JROC - 联合需求监督委员会 $K - 数千美元 KPP - 关键性能参数 LRIP - 低速率初始生产 $M - 数百万美元 MDA - 里程碑决策机构 MDAP - 主要国防采购计划 MILCON - 军事建设 N/A - 不适用 O&M - 运营与维护 ORD - 运营需求文件 OSD - 国防部长办公室 O&S - 运营与支持 PAUC - 项目采购单位成本
先进材料科学中心 (GS-CAMS) 的总体目标是推动该地区的基础和应用材料科学,以支持佐治亚州东南部及其他地区的经济增长和发展。材料科学是一门跨学科的 STEM 领域,集生物学、化学、地质学、物理学和工程学于一体。该学科以所有类别材料的制备、特性和功能为中心。先进材料是指经过工程设计或设计,具有与传统材料相比特定且通常更优越的性能的一类材料。这些材料通常是通过创新工艺和技术开发的,并用于航空航天、电子、能源、医疗保健等广泛行业。先进材料具有更好的性能、耐用性和功能性,通常可以促进新技术和尖端技术的开发。这些材料类别可能包含纳米材料、先进陶瓷、先进聚合物、半导体和超导体、智能材料、功能材料、超材料以及生物相容性和仿生材料。所有这些也都体现了这些材料制备的可持续性概念。佐治亚南方大学已经指定了几个研究影响领域,其中之一就是先进材料领域
制造技术是一个不断发展的领域,它不断地融入新的迭代和创新,为当今的制造商创造激动人心的新机遇并打开进步之门。制造业面临着加工先进材料的挑战,这些材料需要高精度、尺寸精度、复杂几何形状和更好的表面光洁度,从而导致制造业发生重大转型。工业中对具有微型特征的微型部件的需求也与日俱增。为了应对这些工业挑战,特别是在“自力更生的印度”时代,工程专业的学生需要从研究人员那里了解各种先进的制造技术及其具体应用。印度政府的“印度制造”运动旨在将印度打造为全球制造业中心。拟议的在线短期课程的目标是与学员分享先进制造领域的演讲者为“Atma Nirbhar Bharat” 的可直接工业应用的产品进行/观察到的尖端研究和开发。演讲者是来自外国大学、印度理工学院 (IIT)、国家理工学院 (NIT)、CFTI 和其他知名机构的杰出研究人员。
