摘要:废水主要根据其生产来源分类为国内,工业和农业工业。Piggery废水(PWW)是一种牲畜废水,其特征是其高浓度的有机物和铵,以及其异味。传统上,PWW在开放的厌氧泻湖,厌氧消化器和活化的污泥系统中进行了处理,这些污泥系统分别表现出较高的温室气体排放,有限的养分清除和高能量消耗。光合微生物可以以低运营成本和碳,氮和磷的能力恢复,可以在工程光生反应器中支持可持续的废水处理。这些微生物能够通过光合作用过程吸收太阳照射,以获得能量,该能量用于其生长以及相关的碳和养分所吸收。紫色的亲子细菌(PPB)代表了自然界中用途最广泛的代谢的光合作用微生物,而微藻是近年来最研究的光合微生物。本综述描述了使用光合微生物(例如PPB和微藻)的水浸处理处理的基本原理,对称性和不对称性。还讨论了主要的光生物反应器配置以及PPB和微藻生物量量化策略的潜力。
将阳光转化为化学能,即光合作用,是地球上生命的主要能源。基于从电子到细胞量表的多尺度计算模型的可视化形式,以fulldome show earl the planet earth的诞生的摘录形式提出。这种可访问的视觉叙述显示了外行观众,包括孩子,如何通过一系列蛋白质捕获,转换和存储阳光的能量,从而使活细胞捕获。可视化是生物物理学家,可视化科学家和艺术家之间多年合作的结果,而这反过来又基于在结构和功能建模上进行了长达十年的实验计算合作,从而产生了对细菌性生物概念性细菌性生物概要细胞器的原子细节描述。该项目需要进行的软件进步导致了大量的性能和功能进步,包括硬件加速的电影射线跟踪和实例可视化,以进行有效的单元格式建模。所描述的能量转换步骤具有从电子到单元水平的功能整合,涵盖了近12个数量级的时间尺度。此原子细节描述独特地使人对人类最早的故事之一的现代重述 - 光与生命之间的相互作用。
引入的技术在追求碳中性社会中分开,捕获和重复使用CO 2的排放越来越重要。正在研究各种碳捕获的方法,其中一种使用了诸如光合作用反应之类的生物处理方法。这种方法涉及使用光合微生物吸收CO 2并合成有机物质和其他有用材料,现在的研究旨在提高效率并提高这些类型的过程的规模。Shimadzu TOC-L总有机碳分析仪提供了一种简单而快速的方法来测量TOC,以评估CO 2捕获中生长的微生物量。由于可以通过测量无机碳(IC)来量化溶解在培养基中的CO 2的量,因此IC也可以用于确定微生物吸收的CO 2的量。这些评估可用于帮助筛选和繁殖CO 2固定微生物,并优化培养和生长条件。本文描述了在包含紫色光合细菌的样品中测量TOC的示例,并评估了样品中的微生物量。
长期以来一直有兴趣使用微生物在生物驱动的电化学系统中直接发电。第一个这样的系统是用异养微生物运行的,被称为微生物燃料电池。他们依赖于从细胞出口并由阳极收集的代谢过程中的一些电子。微生物燃料电池提供了同时分解废物并产生电力的有吸引力的可能性,并已被用来产生电源来照亮那里收获的尿液中的液压[1]。最近,已经描述了使用光合合成微生物而不是异胞营养的系统来产生电力[2-5]。它们如何工作,并且会有用吗?典型的设备[2-4],称为“生物伏洛耐型设备”或“ BPVS”,使用氧气苯二合成微生物(通常是蓝细菌,但真核藻类也可以使用)。这些生物利用太阳能来氧化水,产生通常用于细胞内二氧化碳固定的电子,氧作为废物。但是,某些电子离开细胞(“外部发生”)。电子采用的路线以及某些电子离开电池的原因尚不清楚。外部发电可能有助于金属动员或处理吸收过量光能的影响。然而,电子可以通过阳极收集,通过外部电路绕过,并在催化天主教处重新组合,氧气和质子形成水。在外部电路周围通过时,电子做有用的工作。与传统的光伏电池不同,BPV还会在黑暗中产生动力(可能是由储存的光合作用产品的代谢),并且与电池不同,它们不会不可避免地会降低,因为它们由阳光提供动力,而不是电池中电极的可消耗性的氧化还原夫妇。在实验室中都非常好,但是由光合微生物提供的BPV会有现实世界中的应用,多久?实验室研究表明,每平方米0.5至0.8瓦的区域的最大功率输出[5,6],并且估计表明它们原则上可以产生每平方米多达几瓦的数量。这比传统的光伏安装少,尽管最多只有几倍[3]。很小,但已经能够为项目供电
光合作用是维持植物和人类生命的关键过程。提高农作物的光合能力是增加其产量的一种有吸引力的方法。虽然光合作用的核心机制在 C3 植物中高度保守,但这些机制非常灵活,允许光合特性存在相当大的多样性。这种多样性之一是在高辐照度下保持较高的光合光能利用效率,正如在少数特殊的 C3 物种中发现的那样。十字花科的一种植物 Hirschfeldia incana 就是这样一种特殊的物种,由于它易于生长,因此是研究这种性状的遗传和生理基础的绝佳模型。在这里,我们展示了 H. incana 的参考基因组,并证实了其较高的光合光能利用效率。尽管 H. incana 是十字花科中迄今为止光合速率最高的,但与其密切相关的 Brassica rapa 和 Brassica nigra 的光饱和同化率也很高。H. incana 基因组已通过大规模染色体重排、物种特异性转座子活性和重复基因的差异保留与 B. rapa 和 B. nigra 基因组广泛分化。H. incana 、B. rapa 和 B. nigra 中参与光合作用和/或光保护的重复基因在拷贝数和基因表达之间表现出正相关,这为这些物种高光合效率的潜在机制提供了线索。我们的研究表明,H. incana 基因组是研究高光合光能利用效率的进化和提高作物物种光合速率的宝贵资源。
降解液中的抗生素四环素 (TC) 及其降解产物 (TDPs) 存在严重的环境问题,例如损害人体健康和降低生态风险,因此需要进一步处理后才能排入水环境,此外,它们对微藻的环境影响尚不清楚。本研究采用水钠锰矿光催化和紫外照射降解 TC,随后利用微藻 Scenedesmus obliquus 进行生物净化。此外,还检测了微藻的光合活性和转录以评估 TC 和 TDPs 的毒性。结果表明,光催化降解 30 min 后效率达到 92.7%,检测到 11 种中间产物。微藻在 8 d 后就达到了较高的 TC 去除率 (99.7%)。降解的TC溶液(D)处理下的S. obliquus生物量显著低于纯TC(T)(p < 0.05),且T处理下的S. obliquus恢复力优于D处理。不同处理的转录组分析显示,差异基因表达主要涉及光合作用、核糖体、翻译和肽代谢过程。光合作用相关基因的上调和叶绿体基因的差异表达可能是S. obliquus在暴露于TC和TDPs时获得高光合效率和生长恢复的重要原因。本研究为采用催化降解和微藻净化相结合的方式去除TC提供了参考,也有助于认识TDPs在自然水环境中的环境风险。
摘要:光氧化还原催化通常依赖于单个发色团的使用,而将两种不同的光吸收剂结合起来的策略很少见。在绿色植物的光系统 I 和 II 中,两个独立的发色团 P 680 和 P 700 都独立地吸收光,然后它们的激发能量以所谓的 Z 方案结合,从而驱动一个热力学上非常苛刻的整体反应。在这里,我们采用这一概念对有机底物进行光氧化还原反应,其中组合能量输入是两个红光子而不是蓝光或紫外光。具体而言,在过量二异丙基乙胺存在下,Cu I 双(α-二亚胺)复合物与原位形成的 9,10-二氰基蒽基自由基阴离子结合可催化约 50 个脱卤和脱甲磺酰反应。这种双光氧化还原方法似乎很有用,因为红光的破坏性较小,而且穿透深度比蓝光或紫外线辐射更大。紫外-可见瞬态吸收光谱表明,溶剂从乙腈到丙酮的细微变化会引起反应机制的转变,涉及占主导地位的光诱导电子转移或占主导地位的三重态-三重态能量转移途径。我们的研究说明了在多光子激发条件下运行的系统的机械复杂性,并提供了有关如何使所需和不需要的反应步骤之间的竞争变得更可控的见解。关键词:光催化、光谱、机械分析、电子转移、能量转移■简介
Xiaolong Chen 1,Joshua M. Lawrence 2,Laura T. Wey 2,Lukas Schertel 1,Qingshen Jing 3,Silvia Vignolini 1,Christopher J. Howe 2,Sohini Kar-Narayan 3,Jenny Z.
对于由多个铬孔组成的分子系统,可以计算激发态,例如,使用多方面配置相互作用(MRCI)10或时间依赖性密度功能理论(TDDFT)。11然而,此类计算的成本随系统大小陡峭。这种蛮力方法的替代方法是使用简化的模型在高水平上计算单个发色团以及它们之间的相互作用。12,13个发色团可以在基于片段的方法中作为片段处理,其中一些含量为14-22,其中一些激子耦合23,24和DeLacalized激发25可以计算。激发耦合负责能量转移,而激发态的离域将光学过渡能的转移以及在分子聚集体上光谱中测得的振荡器强度的重新分布。
通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。