本文介绍了在龙骨项目框架下开发的高速近红外单光子检测器(空间量子源分布的技术开发,ESA ARTES C&G计划)。基于在Geiger模式下运行的GHz门控雪崩光电二极管,该检测器提供紧凑性,毛皮和冷却能力,无维护操作和高速单光子检测性能。这些高性能使其非常适合极低的光级检测应用,例如太空式量子通信,卫星激光范围,绕行空间碎片光学跟踪和远程激光雷达。本文详细介绍了系统的体系结构和性能指标,涵盖了量子效率,深度计数率,时间抖动,最大计数率,时间窗口宽度以及螺栓效率的概率。实质性增强。
量子自旋液体是量子物质的外来阶段,尤其与许多现代冷凝物质系统有关。dirac自旋液体(DSL)是一类无间隙的自旋液体,它们没有准粒子描述,并有可能在2 d晶格上的各种自旋1/2磁系统中实现。尤其是,在低能量下,(2 + 1)d量子型动力动力学在低能量上描述了平方晶格旋转1 /2磁体中的DSL,N f = 4 f = 4个无质量的dirac fermions的风格,最少耦合到出现的u(1)球场。存在相关的,对称性允许的单极扰动使得正方形晶格上的DSL本质上不稳定。我们认为,DSL描述了熟悉的Neel相(或价键固体(VBS)相)内的稳定连续相变。换句话说,DSL是物质单阶段内的“不必要”量子关键点。我们的结果提供了方形晶格DSL的新型视图,即临界旋转液体可以存在于Neel或VBS状态本身内,并且不需要离开这些常规状态。
合著者:PERUZZO 教授,Alberto(RMIT);JOHNSON 博士,Brett(RMIT);KRASNOKUTSKA 博士,Inna(RMIT);BULLOCK 博士,James(墨尔本大学);MESSALEA 博士,Kibret(RMIT);CHAPMAN 博士,Robert(苏黎世联邦理工学院);TAMBASCO 博士,Jean-Luc(RMIT)
图1:(a)TPC的几何形状以及相互空间和相关的高对称点的表示。(b)每个原始细胞内两个孔的TPC的分散图(黑色)或不同的(红色)半径1和R 2。(c)浆果曲率和山谷Chern数模拟了为疾病的TPC(r 1 = 180 nm和r 2 = 80 nm)。(d)边缘模式的色散曲线(实心蓝线)沿着胡须界面在两个半偶然的镜像对称TPC之间,平行于γk方向(浅蓝色背景表示投射的散装模式)。实心红线显示无限TPC的分散曲线。插图比较界面的FBZ(厚蓝线与长度为2π/b 0)和无限TPC的FBZ。(e)模拟(左图)中使用的典型单元电池和边缘模式的磁场振幅的分布(右图)。
研究人员表示:“GaN/AlN 量子点的一个非常吸引人的特征是它们属于 III 族氮化物半导体家族,即固态照明革命(蓝色和白色 LED)背后的家族,其重要性在 2014 年获得了诺贝尔物理学奖。”“如今,就消费市场而言,它是仅次于硅的第二大半导体家族,主导着微电子行业。因此,III 族氮化物受益于坚实而成熟的技术平台,这使得它们在量子应用开发中具有很高的潜在价值。”
摘要近年来,范德华(Van der Waals)材料中表面声子极地(SPHP)的激发受到了纳米光子学界的广泛关注。alpha相钼三氧化物(α-MOO 3),一种天然存在的双轴双曲晶体,由于其在不同波长带的三个正交指导下支持SPHP的能力(范围10-20 µM),因此出现是一种有前途的极性材料。在这里,我们报告了大面积(超过1 cm 2尺寸)的制造,结构,形态和光学IR表征,α -moo 3多晶膜通过脉冲激光沉积沉积在熔融二氧化硅底物上。由于随机晶粒分布,薄膜在正常发生率下未显示任何光学各向异性。但是,提出的制造方法使我们能够实现单个α相,从而保留与α -moo 3片的语音响应相关的典型强分散体。报告了IR光子学应用的显着光谱特性。例如,在1006 cm -1处具有极化的反射峰,动态范围为∆ r = 0.3,共振Q因子在45°的入射角下观察到高达53的共振Q。此外,我们报告了SIO 2底物的阻抗匹配条件的实现,从而导致独立于极化的几乎完全完美的吸收条件(R <0.01)在972 cm-1处,该条件可维持以较大的入射角维持。在此框架中,我们的发现似乎非常有前途的,对于使用远场检测设置,用于有效和大规模的传感器,滤镜,过滤器,热发射器和无标签的生物化学传感设备,用于进一步开发无IR线印刷膜,可扩展的膜,用于高效和大规模的传感器,过滤器,热发射器和无标签的生化感应设备。
研究人员推测,量子点还为实现其他量子互联网应用提供了巨大的前景,例如量子中继器、分布式量子传感,因为它们允许固有存储量子信息并可以发射光子簇状态。这项研究的成果强调了将半导体单光子源无缝集成到现实的、大规模和高容量量子通信网络中的可行性。
•射线射线光学光学(几何(几何光学)光学):: Fermat的Fermat的Fermat的原理,原理,原理,携带携带和矩阵矩阵光学元件.. s l s l s l s l s l s l s l s l w o ti o ti o ti(i t f&g i g i g i g i s claverian scressic corterican s clave and clave scallice sclasic scallice scallice clave and clave wave wave wave wave( Beams) Beams): Scalar Scalar wave wave equation, equation, Helmholtz Helmholtz equation, equation, Superpostion Superpostion of of Waves, Waves, Interferometers, Interferometers, Paraxial Paraxial Wave Wave Equation, Equation, Gaussian Gaussian Beam Beam Solution, Solution, ABCD ABCD Law, Law, Hermite Hermite-Gaussian Gaussian Beams Beams.ABCD ABCD法律,法律,Hermite Hermite高斯高斯横梁。•激光激光物理物理学:轻度放大,放大,抽水计划,方案,增益系数,系数,系数,激光激光输出(CW(CW(CW和脉冲)脉冲)。声音大声疾呼,光学和非线性非线性光学元件• Electromagnetic Electromagnetic Optics Optics:: Maxwell Maxwell Equations Equations in in Vacuum Vacuum and and Dielectrics, Dielectrics, Monochromatic Monochromatic Waves, Waves, Plane Plane Waves, Waves, Polarization Polarization Ellipse, Ellipse, Jones Jones Formalism, Formalism, Reflection Reflection and and Refraction Refraction of of Light Light from from aa Boundary边界..•Fabry Fabry-孔孔洞腔::平面平面腔,腔,阻尼,阻尼,技巧,技巧,技巧,球形球形 - 镜面镜面腔,腔,稳定稳定和不稳定的不稳定型腔。光学光学涂层涂层设计•光子光子光学光学和光材料 - 物质材料相互作用::光子光子光子和光子光子流式流式材料材料属性属性,并模型模型光子光子和原子和原子和原子和原子流,以及流,材料,材料材料属性以及模型,模型,模型,模型,模型,光子,光子光子和型号。
注意:介绍部分是您的一般知识,不应将其视为政策覆盖标准。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.635171 doi:Biorxiv Preprint