执行摘要 最新技术摘要 在过去 20 年中,硅光子学已成为光子集成电路 (PIC) 的一项极具吸引力的技术,因为它直接建立在硅纳米电子领域的极度成熟基础之上。因此,它开辟了一条通往非常先进的 PIC 的道路,具有非常高的产量和低成本。更准确地说,今天,硅光子 PIC 正在 200 毫米和 300 毫米 CMOS 代工厂中以纳米级精度和可重复性进行商业化生产,这从光子学的角度来看是前所未有的。基本技术利用绝缘体上硅 (SOI) 晶圆,其中埋氧层顶部的硅层充当连接芯片上器件的波导的核心。由于硅是导光材料,氧化硅是包层,该技术可以解决波长范围约为 1 至 4 m 的应用,从而包括以 1300nm、1550nm 和 1550(+)nm(分别为 O、C 和 L 波段)为中心的非常重要的光纤光谱带。硅光子学已经成为十多家公司(其中大部分是无晶圆厂公司)用于数据中心和电信网络中高数据速率收发器产品的首选技术。总的来说,他们向市场部署了估计数百万个硅光子收发器。大约有 20 个硅光子制造平台(部分为工业平台,部分为支持原型设计和小批量制造的研究机构平台)已经建立,这些平台基于现有基础设施和源自硅电子行业的专有技术(见附录 A1)。典型平台允许集成高速调制器和高速 Ge 探测器,符号率范围为 50 至 100 Gbaud,以及用于光束组合/分裂、波长选择功能、偏振选择功能和片外耦合的高级无源功能。一些平台允许其他功能,例如与高级电子设备的集成(单片或混合)、光源的集成(异构或混合)以及面向传感的功能(例如微流体)。大多数平台的运作方式类似于代工厂:任何最终用户都可以访问它们,无论是全掩模版/全晶圆批次 (FRFL) 模式还是成本分摊多项目晶圆 (MPW) 模式,其中最终用户可以提交部分掩模版的设计,并将收到几十个处理过的芯片而不是完整的晶圆。 FRFL 模式成本高昂(数十万欧元/美元),但每芯片成本较低(每芯片约 10 欧元/美元),而 MPW 模式每设计成本更实惠(数十万欧元/美元),但每芯片成本约 1000 欧元/美元。当扩展到更高产量(例如 1000 片晶圆)时,芯片成本可降至每芯片 1 欧元/美元以下,因为固定掩模和间接成本在整个批次中摊销。当代工厂基础设施的投资已经折旧或与其他用户共享时,较低的单芯片成本也会受益。芯片代工厂向其客户提供工艺设计套件 (PDK)。这些 PDK 详细说明了给定平台的设计规则,并包含基本组件和电路库。硅光子学 PDK 的成熟度尚未达到 CMOS IC 代工厂的水平。今天,硅光子学 PDK 仅包含非常基本的构建模块库,特别是对于 MPW 操作模式。未来的硅光子学 PDK 必须包含组件和电路的紧凑模型,其参数基于经过验证的测量数据,并考虑到晶圆之间和晶圆之间的工艺变化。
Rutronik 的无汞紫外线产品组合将增强(在某些情况下甚至彻底改变)紫外线市场领域(例如医疗细胞成像、药物检测、防火、保存和光合作用)的应用构建方式。除了紫外线控制组件和模块、紫外线镜头、LED 驱动器、风扇和控制传感器(紫外线、VOC、PIR 等)外,Rutronik 还提供使用 VOC 传感器检测气味的评估板。可以使用 UV-A LED 与光催化过滤器结合使用来中和气味,或者使用能够使用 UV-C LED 对空气、水和表面进行消毒的电路板来中和气味。
摘要:胶体粘土纳米片是通过由于其形状各向异性的形状晶体而在水中形成晶状体粘土矿物的分层晶体获得的。在液晶粘土纳米片上加载有机染料将启用新型的光子材料,其中负载染料的光函数由粘土纳米片的液晶度控制。然而,有机染料在纳米片上的吸附会使纳米片表面疏水,因此,纳米片的胶体稳定性丢失了。在这项研究中,通过将阳离子阳离子的染料染料夹在一对合成氟脱甲岩纳米片之间来克服这种缺点。这是通过制备Stilbazolium - 粘土第二阶段插入化合物,其特征是将染料阳离子插入Hectorite粘土的其他每个层间空间,在那里非中型的层间间空间由Na +离子占据。第二阶段的插入化合物是通过在所有层间空间中掺入Na +离子的母离子粘土矿物的部分离子交换获得的,并从Na +含有含有Na +的层间间空间分层,形成粘土纳米片,以夹层染料分子。染料 - 糖粘土纳米片的水性胶体形成胶体液晶,染料 - 丝晶液晶粘土纳米片对施加的交流电场做出反应,以平行于电场。粘土纳米片的电对准会诱导夹层sti菌分子的光吸收改变,这验证了构建粘土 - 有机杂交的刺激反应光子材料的策略。电场下染料 - 丝晶粘土纳米片的组装结构的特征是分配的离散粘土血小板,这与粘土纳米片的胶体液体晶体有些不同,而粘土纳米片的胶体液体均不具有染色器载荷,而没有巨型液体晶体域的特征,其特征在于宏观液体晶体域。■简介
Rutronik 的无汞紫外线产品组合将增强(在某些情况下甚至彻底改变)紫外线市场领域(例如医疗细胞成像、药物检测、防火、保存和光合作用)的应用构建方式。除了紫外线控制组件和模块、紫外线镜头、LED 驱动器、风扇和控制传感器(紫外线、VOC、PIR 等)外,Rutronik 还提供使用 VOC 传感器检测气味的评估板。可以使用 UV-A LED 与光催化过滤器结合使用来中和气味,或者使用能够使用 UV-C LED 对空气、水和表面进行消毒的电路板来中和气味。
光子时间晶体(PTC)提供了一个全新的平台,该平台由于定期变化的电磁特性而显示出光波扩增。控制这种扩增的需求变得越来越重要,尤其是随着基于元表面的PTC实现的出现。这项工作引入了PTC中孤立的时间缺陷,以建立对扩增的新程度。我们发现,在存在缺陷的情况下,对于带盖的特定动量值(𝒌𝒌)的特定值伴随着对扩增量的显着影响,透射率和反射率接近统一。我们显示了时间缺陷对PTC周期强度指数增长的影响。效果主要取决于PTC的浮频频率,后者在𝒌𝒌时变为真实,从而产生四个脉冲,而不是两种作为间隙传播的结果。我们进一步证明,通过操纵缺陷的时间和介电特性,可以调节动量中的缺陷状态以为专业应用提供设计兴趣。
过去几年对我们所有人来说都非常艰难,我们无一例外地努力为地球的未来做出有意义的贡献。疫情以及预期和实际发生的经济危机深深地影响了我们。似乎这还不够,土耳其还不得不面对并应对另一场巨大的灾难:2023年2月6日发生的卡赫拉曼马拉什地震,直接影响面积约11万平方公里,受灾人口达1350万。尽管如此,我们仍然欣喜地庆祝了国家建国100周年。我们组织或支持了十场会议和社交活动,其中两场由我们直接组织,以庆祝世界光日和世界光子日。我们还在İZTECH举办了第17届纳米技术与技术展览会(NanoTR),并迎来了首批本科生和博士生的毕业,这让我们对未来充满希望。我坚信,我们的每一位毕业生都将为光子学和相关行业做出重大贡献。
由于这些引脚作为量子比特[1]使用,因此仅利用光子吸收这一自然现象便可实现光子-电子纠缠测量(③)[2]。 3. 结果与讨论 我们将六个碱基对应的偏振光转移到庞加莱球上并进行断层扫描,得到了所有偏振保真度超过 80% 的结果(图 2)。这种保真度远远超过了经典极限(66%),并证明我们的转移是具有量子特性的量子态转移。传输保真度恶化的原因被认为是氮核自旋的初始化速度不完善。通过改善这一点,有望提高传输保真度。 4. 结论与展望我们成功地实现了光子的偏振态到氮核自旋的量子转移。未来,我们的目标不仅在于提高转录保真度,还在于将量子态转录到钻石中也存在的碳同位素的核自旋中。 5.参考文献 [1] Y. Sekiguchi, H.Kosaka 等,Nature Commun. 7, 11668 (2016)。 [2] H. Kosaka 和 N. Niikura,Phys. Rev. Lett.
近年来,光学量子增强计量和亚散粒噪声计量变得越来越重要。然而,相关的测量技术尚未在 NMI 中普遍应用,主要是因为可用的相关源,即高效单光子源和纠缠光子源,不可靠或无法商业化。在设计这些源方面已经取得了重大进展,但如果要将它们用于计量应用,则需要进一步开发。针对此 SRT 的提案应旨在基于不同的应用导向平台开发明亮的纠缠光子源,并利用高纯度的单光子源,以展示使用这些源进行特定测量可实现的量子优势。