双向微波光量子转导对于通过光纤连接遥远的超级导管至关重要,并且可以大规模启用量子网络。在Bl´esin,Tian,Bhave和Kippenberg的文章中,“使用高泛音大量的声音共振的量子相干微波传输”(Phys。修订版a,104,052601(2021)),通过中介GHz频段的声子模式在微波光子和电信波段光子之间进行了两种方式量子传感器,利用中介GHz频段的声子模式分别使用压电和光学力学相互作用(是首先实现量子力的量子质量cookelectric cou)。在这项工作中,我们同时检查了第一原理的压电和光学相互作用,以及光学模式之间的evaneastent耦合,讨论哪些参数在光学方面最重要的是这种量子传感器。为了额外的效用,我们还编制了一张可以用作传感器元素的光学材料相关属性的表。
短期课程分为四个部分,均包含入门材料和高级主题。第一部分介绍电子辐射效应的基本机制,重点介绍各种设备和技术的位移损伤。第二部分重点介绍 MOS 晶体管中的总电离剂量引起的退化,讨论这些效应随着 CMOS 制造技术的进步而演变。第三部分介绍电子器件中的单粒子效应,并讨论用于在实验室中重现应用中观察到的故障机制的测试方法。最后一门课程介绍了对光子材料、设备和集成电路的影响,重点是光学材料、光纤、图像传感器和探测器像素阵列。下面提供了每个讲座的更详细描述。所涵盖的主题应能为该领域的新手以及经验丰富的工程师和科学家提供最新的材料和见解。
具有可控繁殖轨迹的可调通风梁引起了各种磁场的兴趣,例如光学材料和激光制造。现有的研究方法会遇到与紧凑性和整合可行性不足有关的挑战,或者它们需要增强的可调性,以实现对宣传轨迹的实时动态操纵。在这项工作中,我们提出了一种新的方法,该方法利用双重跨表面系统超越了这些限制,从而显着增强了通风梁的实际潜力。我们的方法涉及编码一个立方相位文件和两个跨元面之间的两个离轴液透镜相位剖面。通过模拟和实验结果证实了所提出策略的有效性。提议的元设备解决了现有的限制,并为扩大跨不同域的通风光束的适用性奠定了基础
调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
网站:http://www.ece.ualberta.ca/~mgupta1/电子邮件:mgupta1@ualberta.ca电话:7802485637 R&D R&D功能我的研究是多学科的,主要是多学科的,主要集中于具有光学和传感器的柔性元素的光元素和传感器元素,并在光启发下进行光元素,并在光元素上进行照相,并在光元素上进行照相,并在光元素中进行照相,并在光元素中播放。治疗。该研究的重点是工程光学材料和设备,这些材料和设备可以集成在柔性底物上,同时保留其光子性能并根据它们开发新型设备。另一个主要的研究领域是新型生物材料的生长,可用于组织和骨植入物。技术和仪器服务脉冲激光沉积,分子束外延,光学和电气材料表征,光散射传感器开发许可机会
飞秒直接激光写入(FS DLW)是在透明介电材料中产生3D光子微结构的强大方法[1,2]。后者在短时间内通过非线性过程吸收FS脉冲的能量,从而在μM规模的辐照面积(损伤轨道)内进行了永久性的材料修饰,从而导致折射率的热变化。激光波导(WGS)最近引起了极大的关注[1]。飞秒脉冲对激光WGS的铭文受益于快速制造时间,高精度,获得各种几何形状和活性材料。对于此类WG,达到了低至中等传播损失。wg激光器代表光子积分电路的构件之一[2]。如果设计正确,它们会受益于单模模式操作,低阈值和高光强度[3]。表面WG可以通过将非线性光学材料沉积导致脉冲激光通过evanescent-Field景偶联而进行功能化[4,5]。
摘要:本文通过Zns薄膜和波导的结构和光学特征,介绍了二阶非线性光子学对二阶非线性光子学的优势。1。引言是由物质辐射相互作用引起的非线性光学现象,这已经得到了很大改善,这已经大大改善了光子设备的开发,可以在基于非线性光学材料的指导结构内强限制电磁场。[1]。到目前为止,只有很少的研究集中在硫化锌(ZNS)上。这种材料对于非线性光学元件来说是有希望的,因为它是电信波长[2]的高折射率,透明度的宽光谱,高第二[3]和三阶非线性系数[4]和多晶结构,并且有可能充分利用非线性过程[5]。从应用的角度来看,ZnS沉积方法的种类(其中一些是低成本)也代表了有趣的技术优势。在这项工作中,我们描述了由磁控溅射沉积的ZnS薄膜的结构和光学特性,以及第一个基于ZnS的波导的制造过程及其线性表征。
材料中,CNCs的排列起着至关重要的作用。到目前为止,已证明有几种有效的方法来排列CNCs,例如使用铸造蒸发法[6]、剪切力[7]、磁场[8]和电场。[9]除了上述方法所需的复杂装置或CNC薄膜的固有脆性外,最近出现了一种基于液体行为辅助策略的排列CNCs的新方法。[10]使用动态水凝胶体系来驱动CNCs的排列,其中CNCs的取向由外力产生。当纳米材料在空气干燥后相对位置固定时,就得到了颜色可调的CNC混合薄膜。另一方面,为了克服从天然原料中分离CNCs的问题,例如苛刻的条件或高能耗,[11]我们开发了一种新的可回收、选择性的碱性高碘酸盐氧化方法,从而可以高产率地制备PO-CNCs。 [12] 然而,PO-CNCs 上羧基含量相对较少,削弱了水凝胶前体中 PO-CNCs 的稳定性,并且由于许多其他溶解化合物的存在,可能导致 PO-CNCs 聚集,这也给将 CNCs 均匀嵌入潜在光学器件材料带来了普遍挑战。由于水凝胶中 CNCs 的取向依赖于剪切力,因此要求水凝胶具有较高的拉伸性和足够的韧性。由于缺乏有效的能量耗散机制,传统水凝胶通常机械强度差、拉伸性低。[13] 因此,人们已采用各种策略(包括静电相互作用 [14] 双网络结构 [15] 滑环连接 [16] 和疏水缔合 [17])进行交联和能量耗散,以提高水凝胶的性能。为了简化CNCs与聚合物基质之间的相互作用,避免所得光学材料中过多的变量,一种通过共价键交联的聚丙烯酰胺(PAAm)水凝胶具有高透明度和适用的机械性能等优势,是通过液体行为辅助法对PO-CNCs进行取向的有希望的候选材料。[18]中性水凝胶前体溶液可使PO-CNCs稳定存在。此外,其他光学材料,如金纳米棒(GNR),也可以适应这种水凝胶体系,其中表面等离子体共振(SPR)将诱导可见光区域的光吸收。[19]因此,这种水凝胶
光学材料的设计、合成和应用,专门研究多功能新型发光材料、二维材料和变色/光学可变颜料,用于防伪油墨配方,打击货币、护照和重要文件的伪造。 开发隐形墨水(在 365 nm 紫外线 LED 下可见的红色发光),用于防止重复投票。 开发用于高对比度荧光细胞成像以及用于药物输送应用的 MRI 高对比度成像的发光磁性材料。 开发与蓝色二极管激光器集成的黄色荧光粉,为汽车前照灯应用产生白光。 开发用于光学显示和储能应用的碳奇异材料(石墨烯、石墨烯量子点、碳纳米管和纳米纤维)。 设计自主开发的 CVD 装置,用于在 Si/SiO 2 基板上连续生长高度可重复的“MoS 2 /MoSe 2 /WSe 2 单层”沉积,用于计量、太赫兹和光电探测器设备。
*通讯作者。1 Max Planck物质结构和动态研究所,德国汉堡。2物理系,哥伦比亚大学,美国纽约,美国。 3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。 4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。 5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。 6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。 7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。 8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。2物理系,哥伦比亚大学,美国纽约,美国。3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。法国德国大学学院10大学。