周燕萍 ( 通信作者 ), 硕士 , 研究员 , 主要研究方向为半导体材料的刻蚀工艺开发 。E-mail:yanping_zhou@ ulvac. com
光电器件的透明导电电极 (TCE) 设计需要在高导电性和透射率之间进行权衡,从而限制了其效率。本文展示了迄今为止最好的 TCE,其新颖的 TCE 制造方法可以有效缓解这种权衡:集成金属的单片高对比度光栅 (metalMHCG)。metalMHCG 比其他 TCE 具有更高的电导率,同时具有透射和抗反射特性。本文重点介绍红外光谱 TCE,这对于传感、热成像和汽车应用至关重要。然而,由于自由载流子吸收率升高,它们对可见光谱的要求比 TCE 高得多。它展示了创纪录的 75% 非偏振光绝对透射率,相对于普通 GaAs 基板的透射率达到创纪录的 108%。它实现了更大的偏振光绝对透射率,达到 92% 或 133% 的相对透射率。尽管透射率创下了历史新高,但金属 MHCG 的薄层电阻却是有史以来最好的,比任何其他 TCE 都低几倍,范围从 0.5 到 1 𝛀 Sq − 1。
离子阱系统具有较长的相干时间和较强的离子间相互作用,可实现高保真度的双量子比特门,是一种很有前途的量子信息处理方式 [1]。目前,大多数实现都由复杂的自由空间光学系统组成,其较大的尺寸以及对振动和漂移的敏感性会限制离子阵列的保真度和可寻址性,从而阻碍向大量量子比特的扩展。最近,基于集成光子学的设备和系统已被证明是解决这些挑战的一种途径 [2,3]。到目前为止,这些先前的集成演示仅限于使用单一线性偏振光(特别是横向电场 (TE))进行操作,该偏振光名义上与离子阱芯片表面平行。然而,不同的偏振对于实现先进的离子阱系统的许多操作至关重要 [4],这引起了人们对开发偏振多样化发射器的兴趣 [5,6]。例如,基于集成光子学的架构涉及 TE 和横磁 (TM) 偏振光(如图 1a 中的配置),对于实现先进的离子冷却方案必不可少,这种方案可在几种非简并陷阱振动模式下提供亚多普勒温度,例如偏振梯度冷却和电磁诱导透明冷却 [4]。在本文中,我们设计并通过实验演示了一对集成的 TE 和 TM 发射光栅,工作波长为 422 nm,对应于 88 Sr + 离子的 5 2 S 1/2 到 5 2 P 1/2 跃迁,这是离子控制的关键跃迁。我们实施了一种自定义的优化设计算法,以实现发射单向聚焦光束的双层、切趾和曲面光栅,实验测量的光斑尺寸为 TE 光栅 7.6 μm × 4.3 μm,TM 光栅 5.0 μm × 3.6 μm,目标离子高度距芯片表面 50 μm。据我们所知,这项工作代表了用于捕获离子系统的集成 TM 发射光栅的首次开发,因此,它为基于集成光子学的捕获离子量子系统涉及多个极化的高级操作奠定了基础。
在纤维bragg光栅(FBG)传感器网络中,反射光谱的信号分辨率与网络的感应精度相关。审讯器确定信号分辨率限制,并且更粗糙的分辨率导致感应测量的巨大不确定性。此外,来自FBG传感器网络的多峰信号通常被重叠。这增加了分辨率增强任务的复杂性,尤其是当信号具有较低的信噪比(SNR)时。在这里,我们表明,使用U-NET体系结构进行深度学习可以增强信号分辨率,以询问FBG传感器网络而无需修改硬件。信号分辨率有效地增强了100倍,平均根平方误差(RMSE)<2.25 pm。因此,提出的模型允许FBG设置中的现有低分辨率询问器起作用,就好像它包含了更高分辨率的询问器一样。
摘要:在创新的光学传感器网络中使用光纤布拉格光栅 (FBG) 传感器,在地球恶劣环境中提供精确可靠的热测量方面显示出巨大的潜力。多层绝缘 (MLI) 毯是航天器的关键部件,用于通过反射或吸收热辐射来调节敏感部件的温度。为了能够准确、连续地监测绝缘屏障长度上的温度,同时又不影响其灵活性和低重量,FBG 传感器可以嵌入隔热毯中,从而实现分布式温度传感。这种能力有助于优化航天器的热调节,确保重要部件可靠、安全地运行。此外,与传统温度传感器相比,FBG 传感器具有多种优势,包括高灵敏度、抗电磁干扰以及在恶劣环境中工作的能力。这些特性使 FBG 传感器成为太空应用中隔热毯的绝佳选择,因为精确的温度调节对于任务成功至关重要。然而,由于缺乏适当的校准参考,在真空条件下校准温度传感器是一项重大挑战。因此,本文旨在研究在真空条件下校准温度传感器的创新解决方案。所提出的解决方案有可能提高太空应用中温度测量的准确性和可靠性,从而使工程师能够开发更具弹性和可靠性的航天器系统。
心脏在人体中是一个重要而复杂的器官,在怀孕的第二周之间形成大多数器官,胎儿心率是了解胎儿健康状况的重要指标或生物指数。通常,对胎儿心率的长期测量是提供有关胎儿健康信息的最广泛使用的方法。除了胎儿的生命,生长和成熟度外,诸如先天心脏病之类的信息通常是由于心脏结构的结构或功能缺陷所致,这些缺陷经常在胎儿发育期间妊娠的头三个月中发生,因此可以通过连续监测胎儿心脏速率来检测。监测胎儿健康的黄金标准是使用非智能方法和便携式设备,以便在维持母亲和胎儿的健康状况时,它提供了连续监测的可能性,尤其是对于患有高危妊娠的母亲。因此,本研究旨在提出一种低成本,紧凑和便携式设备,用于记录18天大的胎儿小鼠心脏细胞的心率。引入的装置允许立即进行非侵入性心率监测,并且对小鼠胎儿心脏细胞无副作用。一维的镀金等离子标本作为生理信号记录器,主要是带有共振纳米线模式的纳米隔间在集成平台中执行的芯片。此处,在一维等离子样品中产生的表面等离子体波与心脏脉冲的电波配对,并且这种两波配对用于记录和检测具有高精度和良好敏感性的胎儿心脏细胞的心率。以正常模式和两种不同的刺激模式进行此测量。使用肾上腺素进行一次刺激,并再次通过电子刺激进行。 我们的结果表明,我们的传感器足够敏感,可以在标准和兴奋状态下检测心率,并且也能够很好地检测和区分由不同兴奋性条件引起的心率变化。使用肾上腺素进行一次刺激,并再次通过电子刺激进行。我们的结果表明,我们的传感器足够敏感,可以在标准和兴奋状态下检测心率,并且也能够很好地检测和区分由不同兴奋性条件引起的心率变化。
1 Wang Da-heng Center,海伦吉安格量子控制关键实验室,哈尔滨科学技术大学,哈尔滨150080,中国2个国家微观结构实验室,智能光学感应和操纵的主要实验室,以及工程和应用科学学院以及Nanjing University,Nanjing Univentes,Nanjing 210093,En. Del Bosque 115,Colonia Lomas del Campestre,37150León,Gto。 yqlu@nju.edu.cn†这些作者同样贡献。摘要:通过几何阶段与平面光学器件通过几何相位旋转轨道耦合(SOC)为塑造和控制近视结构光提供了有希望的平台。电流设备,从开创性的Q板到最近的J板,仅提供旋转依赖的波前调制,而无需振幅控制。然而,实现对近似SOC状态的所有空间维度的控制需要对相应的复杂振幅的自旋依赖性控制,这对于平面光学元件仍然具有挑战性。在这里,为了解决这个问题,我们提出了一种称为结构化几何相光栅的新型平面元件,该元件能够用于正交输入圆极化。通过使用微结构液晶光平取道,我们设计了一系列扁平式元素,并在实验上显示了它们在任意SOC对照方面的出色精度。该原理通过平坦的光学器件解锁了对副结构光的全场控制,为一般光子SOC态开发信息交换和处理单元提供了一种有希望的方法,以及用于高精度激光束塑形的高精度激光束的外部/腔内转换器。
抽象锂离子电池(LIB)是众所周知的功率来源,因为它们的功率和能量密度更高,循环寿命较长和自我放电率较低。因此,这些电池已被广泛用于各种便携式电子设备,电动汽车和能源存储系统。应用锂离子电池(LIB)系统的主要挑战是确保其在正常工作和异常工作条件下的操作安全性。为了实现这一目标,应将电池的温度管理作为优先事项,以实现更好的终身性能并防止热失败。在本文中,已经探索了用于蝙蝠温度监测的纤维Bragg Grating(FBG)传感器技术与机器学习(ML)的结合(ML)。基于线性和非线性模型的结果已经证实,新方法可以可靠,准确地估算温度量。
微纳米加工是先进制造的重要组成部分,是高端制造水平的标志(Sugioka,2019)。飞秒激光加工技术的出现给微纳米加工领域带来了革命性的变化(Zheng et al.,2020;Mastellone et al.,2020;Xie et al.,2021;Yan et al.,2021;Zhang et al.,2022;He et al.,2022)。飞秒激光具有极窄的脉冲宽度和很高的峰值功率,加工时能量在很短的时间内与材料相互作用(Chichkov et al.,1996;Meng et al.,2019;Hua et al.,2022)。由于其非线性吸收特性,可在焦点处实现真三维高精度加工(Khuat等,2014;Li等,2020)。飞秒激光烧蚀可用于在金属(Davydov and Antonov,2017)、半导体(Ionin等,2012;Li等,2020)、陶瓷(Perrie等,2005)等材料(Gui等,2004;Burghoff等,2006;Lin等,2015)表面制备微纳米结构,展示出其优异的微加工能力。在
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。