洛桑联邦理工学院 - EPFL / 纳米电子器件组 (NANOLAB) Route Cantonale, 1015 洛桑,瑞士 基于 CNT 的超级电容器的测试结构 10/2013 – 07/2015 电子和电信领域硕士学位 布加勒斯特理工大学/电子、电信和信息技术学院/硕士课程:微系统 (UPB-ETTI) 论文:用于生物医学和环境应用的压电能量收集器 07/10/2013 – 08/10/2013 电子纳米技术 – 欧洲培训 – 培训师课程 布加勒斯特理工大学/电子、电信和信息技术学院 主要电子纳米技术 10/2009 – 09/2013 电子和电信领域学士学位 布加勒斯特理工大学/电子、电信和信息技术学院信息技术 / 微电子学、光电子学和纳米技术 (UPB-ETTI) 论文:Xilas – 自主双足机器人 10/2009 – 06/2012 心理教育培训 – 1 级 布加勒斯特理工大学 / 教师培训部 06/2010 培训 – 印刷电路板 (PCB) 设计和制造简介 布加勒斯特理工大学 / 电子技术和互连技术中心 09/2005 – 06/2009 学士学位“Vladimir Streinu”国立学院,Găești,Dâmbovița
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,
MLE5003 材料科学与工程项目(8 个单元)MLE5208 光伏材料 MLE5210 材料建模与仿真 MLE5213 磁性材料 MLE5217 材料科学机器学习基础 MLE5218 人工智能材料发现 MLE5219 材料信息学:大数据的作用 MLE5220 材料有限元方法:基本概念和问题解决 MLE5221 可再生燃料和清洁水材料设计 MLE5222 用于能源应用的纳米和二维材料 MLE5223 可持续的合理材料设计 MLE5224 材料降解 MLE5225 可持续的电活性材料 MLE5226 未来可持续发展挑战的问题解决 MLE5228 超导和超导器件 MLE5229 微电子先进材料 MLE5230 微电子材料特性MLE5231 有机和纳米晶体光电子学 MLE5232 电介质材料及应用 MLE5233 未来的功能电子设备 MLE5234 光学材料:从量子光到纳米设备 MLE5235 二维材料 MLE5236 新型量子材料中的电子传输 MLE5238 生物电子学 MLE5239 生物界面材料 MLE5240 可持续性集光材料 MLE5241 机器人材料 MLE5243 材料人工智能最新主题 MLE5244 量子光子学材料与设备
纳米晶体 (NC) 现已成为光子应用的既定基石。然而,它们在光电子学中的集成尚未达到同样的成熟度,部分原因是人们认为瓶颈在于跳跃传导导致的固有有限迁移率。人们做出了巨大努力来提高这种迁移率,特别是通过调整粒子表面化学以实现更大的粒子间电子耦合,并且已经实现了 ≈ 10 cm 2 V − 1 s − 1 的迁移率值。人们承认,这个值仍然明显低于 2D 电子气体中获得的值,但与具有类似约束能的外延生长异质结构中垂直传输的迁移率相当。由于进一步提高迁移率值的前景似乎有限,因此建议应将精力集中在探索跳跃传导带来的潜在好处上。这些优势之一是扩散长度对偏置的依赖性,这在设计基于 NC 的设备的偏置可重构光学响应方面起着关键作用。本文将回顾构建偏置激活设备的一些最新成果,并讨论设计未来结构的基本标准。最终,跳跃传导是产生低无序材料无法提供的新功能的机会。
LTPC 子流:电子系统工程 21ECE201J Python 和科学 Python 2 0 2 3 21ECE202T 微纳米制造技术 3 0 0 3 21ECE203J 农业智能传感器和设备 2 0 2 3 21ECE204T 光电子学 3 0 0 3 21ECE205T 柔性电子学 3 0 0 3 21ECE301T 纳米级电子设备 3 0 0 3 21ECE302J 实时操作系统 2 0 2 3 21ECE303T MEMS 技术 3 0 0 3 21ECE304T 网络物理系统框架 3 0 0 3 21ECE305J 机器学习算法 2 0 2 3 21ECE401T 高级数字系统设计 3 0 0 3 21ECE402T 半导体器件建模 3 0 0 3 21ECE403T 微波集成电路 3 0 0 3 21ECE404T 太赫兹器件及应用 3 0 0 3 子流:通信系统工程 21ECE220T 无线和光学传感器 3 0 0 3 21ECE221T 雷达和导航辅助设备 3 0 0 3 21ECE222T 自组织和传感器网络 3 0 0 3 21ECE223T 卫星通信和广播 3 0 0 3 21ECE224T 密码学和网络安全 3 0 0 3 21ECE225T 光学系统和网络 3 0 0 3 21ECE320T 软件定义网络 3 0 0 3 21ECE321T 射频和微波半导体器件 3 0 0 3 21ECE322T 使用 R 进行数据分析 3 0 0 3 21ECE323T 网络安全 3 0 0 3 21ECE324T 先进的移动通信系统 3 0 0 3 21ECE420T 信息理论与编码 3 0 0 3 21ECE421T 无线通信网络 3 0 0 3 子流:信号处理 21ECE240T 小波和信号处理 3 0 0 3 21ECE241J 音频和语音处理 2 0 2 3 21ECE242J 模式识别和神经网络 2 0 2 3 21ECE340J 数字图像和视频处理 2 0 2 3 21ECE341J DSP 系统设计 2 0 2 3 21ECE440T 自适应信号处理 3 0 0 3 21ECE441T 机器感知与认知 3 0 0 3 21ECE442T 多媒体压缩技术 3 0 0 3 总学习学分 18
在过去的几十年中,研究人员一直致力于多功能材料的研究,这些材料可用于自旋电子学、光电子学、热电 (TE) 等各种应用。随着对绿色能源需求的激增,TE 材料因其在能源消耗时将相对较小的废热转化为有用能量的能力而受到广泛考虑。已经探索了多种材料用于潜在的半金属和 TE 设备,例如有机 1、硫族化物 2,3、方钴矿 4–6、氧化物 7–12、混合钙钛矿 13–15、三点金属 16、三元化合物 17 和半 Heusler (hH) 合金 18–29。其中,Heusler 化合物自 1903 年发现以来,由于其简单的晶体结构和迷人的特性(包括磁性、半金属性、超导性、光电性、压电半导体、热电性、拓扑绝缘体和半金属 30–38 ),获得了更多的关注。热电材料被应用于日常生活中,以满足全球化社会日益增长的能源需求。高效的 TE 设备(冷却器、发电机、温度传感器等)可以利用大量浪费的热能来发电,反之亦然 39,40 。为此,设备需要更大的性能系数(ZT),这取决于由以下定义的传输特性 41,42
摘要:半导体需要稳定的掺杂才能应用于晶体管、光电子学和热电学。然而,这对于二维 (2D) 材料来说是一个挑战,现有的方法要么与传统的半导体工艺不兼容,要么会引入时间相关的滞后行为。本文我们表明,低温 (<200 ° C) 亚化学计量 AlO x 为单层 MoS 2 提供了稳定的 n 掺杂层,与电路集成兼容。这种方法在通过化学气相沉积生长的单层 MoS 2 晶体管中实现了载流子密度 >2 × 10 13 cm − 2、薄层电阻低至 ∼ 7 k Ω / □ 和良好的接触电阻 ∼ 480 Ω · μ m。我们还在这个三原子厚的半导体上实现了创纪录的近 700 μ A/μ m (>110 MA/cm 2 ) 的电流密度,同时保持晶体管的开/关电流比 >10 6 。最大电流最终受自热 (SH) 限制,如果器件散热效果更好,最大电流可能超过 1 mA/μ m 。这种掺杂的 MoS 2 器件的电流为 0.1 nA/μ mo,接近国际技术路线图要求的几个低功率晶体管指标。关键词:2D 半导体、电流密度、掺杂、高场、自热、MoS 2 、Al 2 O 3 T
具有高电子迁移率的二维硒化铋 (Bi 2 O 2 Se) 在未来高性能、柔性电子和光电子器件中具有优势。然而,薄片 Bi 2 O 2 Se 的转移相当具有挑战性,限制了其机械性能的测量和在柔性器件中的应用探索。这里,开发了一种可靠有效的聚二甲基硅氧烷 (PDMS) 介导方法,可以将薄片 Bi 2 O 2 Se 薄片从生长基板转移到目标基板(如微机电系统基板)上。转移的薄片的高保真度源于 PDMS 薄膜的高粘附能和柔韧性。首次通过纳米压痕法实验获得了二维 Bi 2 O 2 Se 的机械性能。研究发现,少层 Bi 2 O 2 Se 具有 18–23 GPa 的二维半导体固有刚度,杨氏模量为 88.7 ± 14.4 GPa,与理论值一致。此外,少层 Bi 2 O 2 Se 可承受 3% 以上的高径向应变,表现出优异的柔韧性。二维 Bi 2 O 2 Se 的可靠转移方法和力学性能记录的开发共同填补了这种新兴材料力学性能理论预测与实验验证之间的空白,并将促进基于二维 Bi 2 O 2 Se 的柔性电子学和光电子学的发展。
将光限制到原子尺度的能力对于光电子学和光学传感应用的开发以及纳米级量子现象的探索至关重要。厚度仅为几个原子层的金属纳米结构中的等离子体可以实现这种限制,尽管亚纳米级的制造缺陷阻碍了实际发展。在这里,通过预图案化硅基板并外延沉积厚度仅为几个原子层的银膜制造的原子级薄结晶银纳米结构中展示了窄等离子体。具体而言,对硅晶片进行光刻图案化以引入按需横向形状,对样品进行化学处理以获得原子级平坦的硅表面,并外延沉积银以获得具有指定形态的超薄结晶金属膜。按照此程序制造的结构可以对近红外光谱区域的光场约束进行前所未有的控制,这里通过观察具有极端空间约束和高品质因子的基阶和高阶等离子体来说明这一点,这些因子反映了金属的晶体性。本研究在空间约束程度和品质因数方面取得了实质性的改进,这将有助于设计和利用原子级纳米等离子体器件用于光电子、传感和量子物理应用。
MEVD – 301(A) 光电子集成电路 第一单元光波导理论:波导理论:一维平面波导、二维波导、超越方程、波导模式、模式截止条件。 第二单元光波导制造和特性:波导制造:沉积薄膜;真空沉积和溶液沉积、扩散波导、离子交换和离子注入波导、III-V 化合物半导体材料的外延生长、通过湿法和干法蚀刻技术塑造波导。波导特性:表面散射和吸收损耗、辐射和弯曲损耗、波导损耗测量、波导轮廓分析。 第三单元光耦合基础:横向耦合器。棱镜耦合器。光栅耦合器。光纤到波导耦合器。光波导之间的耦合。定向耦合器。定向耦合器的应用。单元 IV 导波调制器和开关:光调制器中使用的物理效应:电光效应、声光效应和磁光效应。波导调制器和开关。单元 V 半导体激光器和探测器:激光二极管。分布式反馈激光器。集成光学探测器。单元 VI 集成光学的最新进展:导波设备和应用的最新技术,例如光子开关、可调谐激光二极管、光学集成电路。文本/参考文献 1. T Tamir,《导波光电子学》,Springer-Verlag,1990 年 2. R Sysm 和 J Cozens,《光导波和设备》,McGraw-Hill,1993 年
