合作单位 清华大学 北京大学 中国科学技术大学 浙江大学 天津大学 北京理工大学 北京邮电大学 南开大学 长春理工大学 上海理工大学 首都师范大学 华中科技大学 北京交通大学 中国科学院上海光学精密机械研究所 中国科学院半导体研究所 中国科学院光电技术研究所 中国科学院物理研究所 中国科学院上海技术物理研究所 中国仪器仪表学会 光电子技术委员会 COS SPIE-China 委员会 日本光学学会 韩国光学学会 澳大利亚光学学会 新加坡光学学会 欧洲光学学会
高重力技术解决了与常规方法相关的关键挑战,例如溶胶 - 凝胶,水热和化学还原,这通常会导致由于次优混合和传质而导致的异质粒径和分布。高重力合成中使用的RPB反应器会产生离心力,从而产生高效的混合区,从而确保均匀的反应物分布并减少成核和生长所需的时间。这种受控的环境促进了具有一致的大小和形态的纳米颗粒的合成,这是需要高精度的应用的先决条件,例如药物输送和光电子。
1 华沙理工大学微电子与光电子研究所,Koszykowa 75, 00-662 华沙,波兰 2 华沙大学物理学院,Pasteura 5, 02-093 华沙,波兰;piotr.wrobel@fuw.edu.pl 3 Łukasiewicz 研究网络 - 微电子与光子学研究所,Aleja Lotnikow 32/46, 02-668 华沙,波兰;pawel.michalowski@imif.lukasiewicz.gov.pl 4 波兰科学院物理研究所,Aleja Lotnik ó w 32/46, 02-668 华沙,波兰;ozga@ifpan.edu.pl(MO);bwitkow@ifpan.edu.pl(BW); aseweryn@ifpan.edu.pl (AS) 5 华沙理工大学物理学院,Koszykowa 75, 00-662 华沙,波兰;michal.struzik@pw.edu.pl (MS);cezariusz.jastrzebski@pw.edu.pl (CJ);krzysztof.zberecki@pw.edu.pl (KZ) * 通讯地址:jaroslaw.judek@pw.edu.pl
1 吉林大学电子科学与工程学院集成光电子国家重点实验室,长春 130012 2 中国科学院半导体研究所超晶格与微结构国家重点实验室,北京 100083 3 吉林大学物理学院中俄清洁能源与能源转换技术国际联合实验室,长春 130012 4 吉林大学理论化学研究所理论与计算化学实验室,长春 130012 5 吉林大学国际未来科学中心,长春 130012 6 中国人民解放军医学院、中国人民解放军总医院肝胆外科研究所、全军数字肝胆外科重点实验室,北京 100853
摘要:为了进一步提高锂离子电池(LIBS)的能量密度和安全性,需要多功能电解质溶剂来替代常规的碳酸盐溶剂。在这项研究中,将不可氟化的氟化酯甲基3,3,3-三氟丙酸酯(MTFP)评估为具有LICOO 2阳性电极的高压LI电池的电解质溶剂。具有基于MTFP的电解质的LI/LICOO 2电池与具有常规的基于碳酸盐的电解质的电池相比具有较高的能力保留率在高压操作下,基于MTFP的电解质无容量损失或极化增加。 使用基于MTFP的电解质也可以改善LICOO 2电极的低温性能和热稳定性。 通过基于MTFP的电解质循环的LICOO 2电极对X射线光电子光谱进行分析表明,在电极表面上形成了薄且均匀的钝化层,从而产生了极好的环环性和LICOO 2的热稳定性。 与非易燃电解质有关的见解有助于不牺牲安全性的高能液体的发展。具有基于MTFP的电解质的LI/LICOO 2电池与具有常规的基于碳酸盐的电解质的电池相比具有较高的能力保留率在高压操作下,基于MTFP的电解质无容量损失或极化增加。使用基于MTFP的电解质也可以改善LICOO 2电极的低温性能和热稳定性。通过基于MTFP的电解质循环的LICOO 2电极对X射线光电子光谱进行分析表明,在电极表面上形成了薄且均匀的钝化层,从而产生了极好的环环性和LICOO 2的热稳定性。与非易燃电解质有关的见解有助于不牺牲安全性的高能液体的发展。
传感策略正在发展越来越多地集中在超低检测阈值和高度选择性设备上。这些性能可以通过纳米技术来启用,这要归功于印度定义,自上而下的结构[1-3]或化学/生化获得的,即自下而上的构造[4-6]。可以用基于石墨烯的纳米结构来表示自上而下和自下而上的方法之间的一种桥梁。石墨烯是一种二维材料,该材料由六边形晶格结构中的单层碳原子组成[7]。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。 使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。 材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。在一些最成功和/或研究的中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常的材料来利用石墨烯衍生物的特殊机械电阻。中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常
光学技术是 21 世纪最重要的面向未来的行业之一。光学技术的发展受到越来越严格的质量要求以及自动化、数字化、自主系统和辅助系统在各个领域的广泛应用的推动。光学技术是工程科学与自然科学相结合的关键学科。它们推动了机械和系统制造、生产自动化、汽车工程、微电子和光电子、照明技术、制药和医疗产品行业、实验室自动化和国防以及一般安全和安保应用等领域的创新。光学技术制造商正在弥合基础物理研究与技术应用之间的差距。