物理学的目的是探索自然定律,根据这些法律理解多种自然现象,并解释和预测新现象。现代物理学,包括相对论和量子力学的理论,增加了人类对自然知识,并领导着现代科学和技术在各种领域,例如半导体电子,纳米技术,新的材料发展,与能源相关的技术,宇宙学,复杂系统和生物学。Kyung Hee的物理和应用物理学,物理系于1980年在Suwon校园的科学与工程学院成立。 在1999年,它成为电子和信息学院的物理和应用物理专业的专业,并返回独立部门,因为2009年应用物理系再次。。Kyung Hee的物理和应用物理学,物理系于1980年在Suwon校园的科学与工程学院成立。在1999年,它成为电子和信息学院的物理和应用物理专业的专业,并返回独立部门,因为2009年应用物理系再次。有希望的技术,例如纳米结构,记忆和非记忆半导体,高级/能源相关的材料以及应用光学的技术,并已建立了实践教育设施,以在本科生提供培训计划。在纳米结构和半导体领域,我们对电子和光电材料的加工,修改和表征进行研究,以及对新型电子和光电设备的设计,制造和测试。Applied Optics是所有光学电信网络越来越重要的领域,也是我们的专业研究领域之一。被选中的半导体物理研究小组被选为大脑韩国21加上由教育部支持的7年研究生院研究的授予。目前,我们有13名教职员工在纳米结构,半导体,新能量相关材料和光学设备领域进行联合理论/实验协作。
* 通讯作者:Tobias Heindel,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404X Lucas Rickert、Daniel A. Vajner、Martin von Helversen、Sven Rodt 和 Stephan Reitzenstein,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:lucas.rickert@tu-berlin.de(L. Rickert)。https://orcid.org/0000-0003-0329-5740(L. Rickert)。https://orcid.org/0000-0002-4900-0277(DA Vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838 (S. Reitzenstein) Kinga Żołnacz,弗罗茨瓦夫科技大学光学与光子学系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0002-1387-9371 刘汉清,李树伦,倪海桥,牛志川,中国科学院半导体研究所光电材料与器件重点实验室,北京 100083;中国科学院大学材料科学与光电工程中心,北京 100049,E-mail: zcniu@semi.ac.cn (Z. Niu)。 https://orcid.org/0009-0004-7092-2382(H.刘)。 https://orcid.org/0000-0002-9566-6635 (Z. Niu) Paweł Wyborski,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰;丹麦技术大学电气与光子工程系,2800,Kgs.,Lyngby,丹麦 Grzegorz Sęk 和 Anna Musiał,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0001-7645-8243(G. Sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)
MS7001 材料实验室技术 AU:3 先决条件:无 学期:1 和 2 在本课程中,学生将了解所选材料表征仪器的原理和操作。重点是彻底掌握测量和数据解释的原理。所选的所有仪器在材料研究中都有广泛的用途。课程结束时,学生将接受每种仪器的使用培训。没有期末考试。评估将在实验室进行。 MS 7004 研究生研讨会 AU:无 先决条件:无 学期:无 研讨会将由杰出的访问科学家/研究人员主持。学生必须参加两次研讨会并准备一份详细的评论,由来自不同研究领域的 MSE 代表小组进行评估。学生将介绍研讨会概要并接受考官小组的评估。评估将基于评论。由于这是一门通过/不通过的课程,因此本课程没有期末考试。 MS 7023 高级聚合物工程 AU:3 先决条件:MS2010 或同等学历 学期:无 本聚合物工程高级课程旨在为学生提供聚合物行为物理理论背景基础知识,以及聚合物科学与工程研究的一些最新课题。 本课程包括以下内容: 多相聚合物系统,包括共聚物和共混物;相分离和相混合;形态和微观结构发展;应用;填充聚合物系统,包括增强和增韧机制;多相聚合物的机械建模;先进的加工技术和应用;使用现代分析技术对聚合物的结构和性能进行分析:光谱法;动态力学和流变测试;物理化学技术 MS 7032 光电材料 AU:3 先决条件:MS2008 或同等学历 学期:无 光电装置将光转换为电,反之亦然。这些装置与光纤一起帮助我们进入了信息时代。本研究生课程旨在提供对光电子学原理的基本了解,包括材料加工和特性、器件操作原理、制造和特性。 MS 7033 固体电子特性 AU:3 先决条件:无 学期:无 本课程介绍了固态物理和化学的统一框架,用于理解固态材料的大多数物理特性,并构成了大部分半导体物理和器件的基础。它涵盖了微电子学和光电子学等学科的基本概念,并对材料的重要电子参数进行了深入、定量的推导。完成课程后,学生应能够:• 了解材料电子和热结构的理论方面
摘要 在混合溶剂(水-丁醇和水-环己醇)存在下,利用醋酸铜和硫脲研究了硫化铜(CuS)的结构、成分、电气和发光特性。硫化铜样品的 X 射线衍射 (XRD) 图案显示其六方结构,这是各种混合溶剂的结果。通过使用能量色散 X 射线 (EDX) 和傅里叶变换红外 (FT-IR) 检查,确定了键和原子量百分比。使用扫描电子显微镜 (SEM) 发现水-丁醇和水-环己醇中的硫化铜颗粒形态分别为棒状和片状。使用光带能量曲线和紫外-可见光吸收光谱确定了硫化铜纳米结构的带隙能量。硫空位缺陷是 PL 光谱中出现的紫外和可见光发射带的原因。根据 CV 研究,水-环己醇辅助的硫化铜样品的电化学特性优于水-丁醇辅助的硫化铜样品。根据催化剂的效率,计算了混合溶剂辅助的硫化铜样品中坎戈红 (CR) 染料降解的比例。引言与环境问题、危险废物和有毒水污染物相关的硫化铜受到了广泛关注。有机染料对纺织和其他行业的重要性也非常重要。与传统方法相比,催化方法具有多种优势,包括氧化速度更快和不产生多环产物。由于半导体材料吸收光,带隙能量等于或大于,这可能导致自由基氧化系统表面。但如今,硫化铜因其与能量存储和生物应用(包括抗菌和抗癌治疗)的联系而成为主要研究对象。硫族化合物纳米结构半导体,包括 ZnS、CdS、NiS、CoS 和 CuS,可用于气体传感器、LED、光伏电池、光催化和其他应用。CuS 纳米结构是硫族化合物之一,是 p 型半导体材料,由于其在环境温度下的带隙低至 2.2 eV,因此非常有利于光热、光电应用。这是由于光吸收过程中光子原子分子与光吸收之间的相互作用。具有各种形态的过渡金属氧化物作为光电材料的开发引起了人们的新兴趣,最近发现的一类具有有趣光物理特性的纳米材料的报道正在促进
5 澳大利亚悉尼科技大学变革性元光学系统卓越中心,澳大利亚新南威尔士州乌尔蒂莫 2007 年,澳大利亚 * 这些作者的贡献相同。 通讯作者 igor.aharonovich@uts.edu.au 摘要 六方氮化硼 (hBN) 中的色心已经成为集成量子光子学的有吸引力的竞争者。在这项工作中,我们对在蓝色光谱范围内发射的 hBN 单个发射器进行了详细的光物理分析。发射器采用不同的电子束辐照和退火条件制造,并表现出以 436 nm 为中心的窄带发光。光子统计以及严格的光动力学分析揭示了发射器的势能级结构,这表明缺乏亚稳态,理论分析也支持这一点。潜在缺陷可以具有在 hBN 带隙下半部分具有完全占据缺陷态和在带隙上半部分具有空缺陷态的电子结构。总的来说,我们的研究结果对于理解 hBN 中新兴蓝色量子发射器系列的光物理特性非常重要,因为它们是可扩展量子光子应用的潜在来源。简介单光子发射器 (SPE) 被广泛认为是建立和部署量子通信和计算的关键推动者,这涉及按需生成高纯度单光子发射 1-3 。六方氮化硼 (hBN) 因其独特的性质而备受关注,包括以 6 eV 为中心的宽层相关带隙、高激子结合能、存在光学活性自旋缺陷以及能够承载室温 (RT) 亮 SPE 4-11 。hBN 还因其用作深紫外范围的新兴光电材料而备受关注 12 。最近,通过阴极发光 (CL) 测量发现了在蓝色光谱范围内发射的 hBN 色心,称为“蓝色发射器” 13 。这组发射器通常显示超亮、光谱稳定和窄带发射,其零声子线 (ZPL) 始终以 436 nm 为中心 13, 14 。结果表明,这些缺陷与 4.1 eV 处的特征紫外线发射密切相关 9, 14-16 。对 hBN 进行预辐照,例如在氮气气氛中进行高温退火,可产生更高的特征紫外线发射产量,从而产生更多的蓝色色心 15 。此外,在低温下,与 hBN 中的其他量子发射器相比,这些缺陷具有稳定的发射,线宽为亚 GHz,光谱扩散最小 15 。最近,两
光电设备是基于光电转换效应制造的,该效应是现代光电技术和微电子技术技术的开发研究领域[1]。在21世纪,全球光电设备制造业已取得了快速发展,而光电设备的市场逐年增长。光电设备被广泛用于各种场,例如光学显示,有机太阳能电池,激光和波导。它们是信息技术的重要组成部分[2,3]。为了扩大应用程序方案并提高光电设备的性能,许多学者已经在相关领域进行了研究。本期包括12篇论文,这些论文涉及光电设备算法,材料和结构中的各种挑战和机遇。例如,在光学显示的字段中,可以通过优化算法来改善电子纸的响应时间和亮度[4]。在太阳能电池和波导的场中,可以通过设计新的光电材料和设备结构来改善太阳能电池和波导传输距离的转换率[5,6]。本期特刊的最新研究进展如下。电子纸是通过反射显示图像显示的新设备,这是光电设备的重要分支[7]。最广泛使用的电子纸是电泳显示(EPD)。修饰的蓝色颗粒具有较高的Zeta电位和电泳迁移率。他等人。目前,将离子液体用作电泳颗粒修饰的电荷控制剂,并将高电离1-丁基1-丁基-1-甲基磷脂单离子液体液体移植到杯赛上。然后,成功制备了蓝色的电泳颗粒[8]。制备过程很简单,并且生产成本很低,这有助于实现丰富的EPD颜色显示。此外,算法的优化也可以用于提高EPDS的性能。根据直流电流(DC)平衡的原理设计了驱动波形[9]。研究了统一参考灰度相的亮度曲线,并获得了其驱动时间;同时,根据原始灰度对擦除阶段的持续时间进行了重新设计。结果表明响应时间可以有效缩短。此外,可以通过将红色颗粒添加到EPD [10]来制备三色EPD。为了解决红色幽灵图像的问题,Wang等人。分析了灰度转化中红色颗粒的空间位置分布[11]。研究了红色幽灵图像产生的关键因素,并根据擦除和激活阶段的优化提出了驱动波形。在微胶囊顶部的残留红色颗粒在红色擦除阶段消除,并使用高频电压激活颗粒。红色幽灵图像有效地被抑制了。同样,一些学者发现黑色和红色颗粒可以通过阻尼振荡电压序列分离。红色颗粒被纯化,像素的红色饱和度增加[12]。但是,EPD具有低刷新
Kaş所以TekerKişiselPilGilerİşTelefonu:+90 021 677 7377 Dahili:0 e-posta:kasif.teker@marmara.edu.edu.edu.edu.tr: ScholarID:FQ7GBH8AAAAJ ORCID:0000-0002-1323-9243 YoksisaraştırmacıID:167637 Biyografi他毕业于冶金和材料工程元元。 他在俄亥俄州立大学完成了MS,并在凯斯西部储备大学的材料科学与工程学博士学位上完成了博士学位。 获得博士学位后,他曾在我们的半导体行业担任科学家。 他还曾在弗罗斯特堡州立大学(八年)担任马里兰州和特拉华大学的研究科学家。 他的研究兴趣包括纳米电子学,纳米光子学,III-V复合半导体设备(HBT,HEMT,MOSFET,光电探测器),纳米微型制造(MOCVD,MBE,MBE,PVD等 ),半导体纳米线设备制造和基于纳米线的传感器。 他是高级微型和纳米设备实验室的创始人。 博士,伊斯坦布尔博 博士,弗罗斯特堡州立大学,物理与工程学,2011年至2014年Öğr博士。 üyesi,弗罗斯特堡州立大学,物理与工程学,2005年至2011年,特拉华大学,电气和计算机工程大学,2003-2005-2005Kaş所以TekerKişiselPilGilerİşTelefonu:+90 021 677 7377 Dahili:0 e-posta:kasif.teker@marmara.edu.edu.edu.edu.tr: ScholarID:FQ7GBH8AAAAJ ORCID:0000-0002-1323-9243 YoksisaraştırmacıID:167637 Biyografi他毕业于冶金和材料工程元元。他在俄亥俄州立大学完成了MS,并在凯斯西部储备大学的材料科学与工程学博士学位上完成了博士学位。获得博士学位后,他曾在我们的半导体行业担任科学家。他还曾在弗罗斯特堡州立大学(八年)担任马里兰州和特拉华大学的研究科学家。他的研究兴趣包括纳米电子学,纳米光子学,III-V复合半导体设备(HBT,HEMT,MOSFET,光电探测器),纳米微型制造(MOCVD,MBE,MBE,PVD等),半导体纳米线设备制造和基于纳米线的传感器。他是高级微型和纳米设备实验室的创始人。博士,伊斯坦布尔博博士,弗罗斯特堡州立大学,物理与工程学,2011年至2014年Öğr博士。üyesi,弗罗斯特堡州立大学,物理与工程学,2005年至2011年,特拉华大学,电气和计算机工程大学,2003-2005-2005培训信息博士学位,案例西部储备大学,工程学学院,材料科学与工程学院,美国1996年至2001年硕士,俄亥俄州立大学,工程,材料科学与工程学院,美国,1994年 - 1994年 - 1994年 - 1996 - 1996 - 1996 - 1996-1996-1996-1996-1996冶金与材料工程系教授,土耳其1988年至1993年,研究领域光电材料和设备,半导体材料和设备,材料科学与工程,工程和技术学术标题 /任务冶金与材料工程系工程学院马尔马拉大学博士教授,2020年 - 继续教授伊斯坦布尔大学博士教授,工程与自然科学学院,电气与电子工程系,2016年至2020年。
会议 1:SID 年度业务会议 2024 年 5 月 14 日星期二 / 上午 8:00 – 8:20 / 220A 房间 会议 2:开幕致辞/主旨演讲 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 / 220A 房间 主席:Hyun-Jae Kim,延世大学 2.1:主旨演讲 1:量子点中的量子魔力:合成开启纳米探索之旅 Moungi Bawendi,麻省理工学院教授 2.2:主旨演讲 2:新现实:AR 和 MR 中显示的机遇和挑战 Jason Hartlove,Meta 显示和光学副总裁 2.3:主旨演讲 3:超越像素,创新显示引领未来 TCL 首席执行官赵军 会议 3:AR 光合路器 (AR/VR/MR) 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 2024 年 11 月 14 日 / 上午 11:10 - 下午 12:50 / 房间 220B 主席:Robert Visser 博士,应用材料公司 联合主席:Michael Wittek,默克公司 3.1:特邀论文:衍射波导组合器中的现实与模拟 Guillaume Genoud,Dispelix Oy,芬兰埃斯波 3.2:特邀论文:AR 光学的当前技术和发展 Jee Myung Kim,LetinAR,韩国安养 3.3:变形-XR:用于高效、宽视场近眼显示的成像波导技术 Graham Woodgate,Rain Technology Research Ltd.,英国牛津 3.4:具有曲面波导的时尚外形近眼显示器 Jaeyeol Ryu,三星研究中心,韩国首尔 3.5:杰出论文:用于 AR 显示的全彩色、宽视场单层波导 Qian杨,中佛罗里达大学,美国佛罗里达州奥兰多 第四场:量子点诺贝尔奖(发射、微型 LED 和量子点显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/220C 室 主席:意法半导体 Jonathan Steckel 博士 联合主席:NS Nanotech 的 Seth Coe-Sullivan 4.1:特邀论文:利用胶体纳米晶体合成和自组装来创建模块化光学和光电材料和设备 Chris Murray,宾夕法尼亚大学,美国宾夕法尼亚州费城 4.2:特邀论文:量子点:更亮?苏黎世联邦理工学院,瑞士苏黎世 4.3:特邀论文:QD-LED 发展概况:现状及未来前景 Yeo-Geon Yoon,三星显示有限公司,韩国龙仁 第 5 场:集成 EMR 手写笔显示器(交互式显示器和系统/传感器集成和多功能显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/房间 LL21CD 主席:Hiroshi Haga,天马日本有限公司 联合主席:Derek Solven,Synaptics 5.1:阵列基板中集成天线线圈的 Incell 电磁共振触摸 LCD Chuan Shuai,TCL 华星光电科技股份有限公司,中国武汉 5.2:柔性 OLED 显示屏的电容式触摸和电磁传感器集成设计 Lihua Wang,合肥维信诺科技有限公司,中国合肥