光电设备是基于光电转换效应制造的,该效应是现代光电技术和微电子技术技术的开发研究领域[1]。在21世纪,全球光电设备制造业已取得了快速发展,而光电设备的市场逐年增长。光电设备被广泛用于各种场,例如光学显示,有机太阳能电池,激光和波导。它们是信息技术的重要组成部分[2,3]。为了扩大应用程序方案并提高光电设备的性能,许多学者已经在相关领域进行了研究。本期包括12篇论文,这些论文涉及光电设备算法,材料和结构中的各种挑战和机遇。例如,在光学显示的字段中,可以通过优化算法来改善电子纸的响应时间和亮度[4]。在太阳能电池和波导的场中,可以通过设计新的光电材料和设备结构来改善太阳能电池和波导传输距离的转换率[5,6]。本期特刊的最新研究进展如下。电子纸是通过反射显示图像显示的新设备,这是光电设备的重要分支[7]。最广泛使用的电子纸是电泳显示(EPD)。修饰的蓝色颗粒具有较高的Zeta电位和电泳迁移率。他等人。目前,将离子液体用作电泳颗粒修饰的电荷控制剂,并将高电离1-丁基1-丁基-1-甲基磷脂单离子液体液体移植到杯赛上。然后,成功制备了蓝色的电泳颗粒[8]。制备过程很简单,并且生产成本很低,这有助于实现丰富的EPD颜色显示。此外,算法的优化也可以用于提高EPDS的性能。根据直流电流(DC)平衡的原理设计了驱动波形[9]。研究了统一参考灰度相的亮度曲线,并获得了其驱动时间;同时,根据原始灰度对擦除阶段的持续时间进行了重新设计。结果表明响应时间可以有效缩短。此外,可以通过将红色颗粒添加到EPD [10]来制备三色EPD。为了解决红色幽灵图像的问题,Wang等人。分析了灰度转化中红色颗粒的空间位置分布[11]。研究了红色幽灵图像产生的关键因素,并根据擦除和激活阶段的优化提出了驱动波形。在微胶囊顶部的残留红色颗粒在红色擦除阶段消除,并使用高频电压激活颗粒。红色幽灵图像有效地被抑制了。同样,一些学者发现黑色和红色颗粒可以通过阻尼振荡电压序列分离。红色颗粒被纯化,像素的红色饱和度增加[12]。但是,EPD具有低刷新
主要关键词