为了优化激光诱导的石墨烯(LIG)JANUS膜,本研究研究了膜孔结构,聚二甲基硅氧烷(PDMS)涂层序列以及银(AG)纳米颗粒对膜蒸馏(MD)性能的影响。这项研究旨在增强石墨烯的光热特性,同时使用固有的电导率进行同时照相和电热MD。在相同的照片和电热功率输入中操作,lig janus membrane用较小的毛孔(即闪亮的一面)处理膜面部的膜膜,可改善53.6%的透气性能,并降低特定能量的特定能量35.4%,而与膜相比,用较大的毛孔(i.e.e.e.e.e.e.e.e.e.e)来治疗膜面孔。PDMS涂层序列的效果也取决于孔结构。对于具有较小孔结构的面部,激光照射前的涂层PDM(PDMS-BLSS)与激光照射后的涂层PDMS相比,与涂层PDMS相比,磁通量的提高高达24.5%,特异性能量降低了19.7%(PDMS-ALS)。至于孔结构较大的面部,激光照射前的涂层PDM(PDMS-BLDS)导致与辐照后涂层PDMS相比,与涂层PDMS相比,通量降低高达20.8%,比能量增加了27.1%(PDMS-ALDS)。带有Ag纳米颗粒的LIG JANUS膜导致光热特性提高,将通量提高43.1 - 65.8%,并使特定能量降低15.2 - 30.5%,同时维持相似的电热热特性。进行同时进行照相和电热量MD表明,只有Ag掺杂的Janus Lig膜产生协同作用,从而使组合加热模式的通量高于在单个加热模式下运行时获得的通量的求和。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
随着人们越来越关注政府和金融系统、医疗保健系统和军事通信等关键基础设施的安全通信,QKD 安全光网络的潜在社会影响也十分巨大。QKD 可以保护敏感的个人信息(例如医疗记录和财务信息)免受各种量子攻击和未经授权的访问。此前,印度空间研究组织 (ISRO) 成功演示了两个地面站之间的 QKD 链路,这是朝着开发安全的卫星通信系统迈出的重要一步。2020 年,印度政府宣布成立国家量子技术和应用任务 (NM-QTA),这是一项多机构倡议,旨在促进印度量子技术的开发和部署。NM-QTA 的重点是量子通信,其中可能包括 QKD。在启动 iCET 之后,印度内阁已批准约 6000 亿卢比用于国家量子任务,以加快该国在八年内量子技术的发展。虽然世界上第一个建立的量子网络是由美国国防高级研究计划局 (DARPA) 通过光纤在哈佛大学、波士顿大学和 BBN Technologies 之间建立的量子网络,但目前美国正在开展多个 QKD 计划和研究项目,这些计划和研究项目由美国能源部 (DOE)、美国国家科学基金会 (NSF) 等政府机构资助。
mihail balanici(1),Behnam伊斯兰教(1),穆罕默德·雷汉·拉扎(Muhammad Rehan Raza)(1),Pooyan Safari(1),Aydin Jafari(1),Vignesh Karunakaran,Vignesh Karunakaran(2),Achim Autenrieth(Achim Autenrieth(2)对于电信,Heinrich-Hertz-institut(HHI),Einsteinufer 37,10587柏林,德国,德国,电子邮件:mihail.balanici@hhi.fraunhofer.de(2)自主光学链路容量的用例调整在部分分散的测试床中。我们的提案采用了最先进的流量预报员来提供容量提供,并且在不中断端到端服务的情况下(重新)配置了(重新)配置光网络元素。
它利用了以太网模块发货的广泛历史数据,结合了广泛的市场研究,以预测这些产品在2025 - 2030年的销售。预测包括50多个产品类别,包括100GBE,200GBE,2x200GBE,400G,800G和1.6T收发器,按覆盖率和形式进行排序。历史货运数据和单位,价格和销售的预测均包括三个主要市场细分市场:云数据中心,企业和电信网络。
AI的出现引起了该行业的关注,并将其提升到2023年初的全球现象。目前正在进行AI基础设施的构建。AI提供商正在建立大型AI培训中心,这些培训中心拥有高功率GPU/CPU/IT,随着时间的流逝,Metros将在更接近客户的Metros中增加“推理数据中心”的能力。AI后端与非常短的光学光学“数据中心”相互连接,该市场经历了从2023年到2024年的显着增长。
自GPT出现以来,大型语言模型(LLM)在各行各业中都带来了革命性的进步。作为一种卓越的自然语言处理(NLP)技术,LLM始终在众多领域取得了最先进的表现。但是,LLM被认为是NLP任务的通用模型,当将光网络等专业领域的复杂任务应用于复杂的任务时,可能会遇到挑战。在这项研究中,我们提出了一个LLM授权光网络的框架,促进了对物理层的智能控制,并通过部署在控制层中的LLM驱动试剂(AI-Agent)与应用层有效与应用层相互作用。A-Agent可以利用外部工具并从专门为光网络建立的综合资源库中提取域知识。这是通过用户输入和精心制作的提示来实现的,从而使控制说明的生成以及在光网络中自主操作和维护的结果表示形式。在本研究中说明了LLM在专业领域的能力,并刺激其在复杂任务上的潜力,执行及时工程的细节,建立领域知识库和实施复杂任务的细节。此外,在两个典型任务上验证了所提出的框架:网络警报分析和网络性能优化。2,400个测试情况的良好响应精度和语义相似性在光网络中具有LLM的巨大潜力。
摘要。人工智能(AI)的最终目标是模仿人的大脑,直接从高维感觉输入中执行决策和控制。衍射光网(DONS)为实现高速和低功率消耗的AI提供了有希望的解决方案。大多数报告的DON专注于不涉及环境互动的任务,例如对象识别和图像分类。相比之下,尚未开发能够决策和控制的网络。在这里,我们建议使用深度强化学习来实施模仿人类级决策和控制能力的DON。这样的网络利用残差体系结构,可以通过与环境互动来找到最佳的控制策略,并且可以轻松地与现有的光学设备实现。使用三种类型的经典游戏来验证出色的性能:TIC-TAC-TOE,SUPER MARIO BROS。和RACENing。最后,我们提出了一个基于空间光调制器网络播放TIC-TAC-TOE的实验证明。我们的工作代表着前进的D型迈出的坚实一步,这有望从简单识别或分类任务转变为AI的高级感官能力的基本转变。它可能会在自动驾驶,智能机器人和智能制造中找到令人兴奋的应用程序。
• 公司愿景:该标准包括公司最近的公告、季度出货量、标准机构中的活动以及在每个细分市场的持续时间。 • 执行能力:该标准包括公司的产品发布、产品出货日期、公司在该细分市场的研发预算以及整体财务业绩。 • ASIC 实力:公司自己的 ASIC 公告和 L3 商用芯片的使用情况。我们排除所有基于 L2 ASIC 的系统。 • 城域路由器性能和云路由:公司在电信和云路由方面的表现。 • 长途能力:公司在电信和云光传输方面的表现。 • 数据中心互连 (DCI):公司在云数据中心互连方面的表现。 • 自动化:与上一代产品相比,公司在新产品自动化方面的执行情况。 • ZR/ZR+ 产品:公司目前在 ZR/ZR+ 方面的产品和行业合作伙伴关系。 • DSP 产品:公司目前在 ZR/ZR+ 方面的产品以及行业合作伙伴关系。