自GPT出现以来,大型语言模型(LLM)在各行各业中都带来了革命性的进步。作为一种卓越的自然语言处理(NLP)技术,LLM始终在众多领域取得了最先进的表现。但是,LLM被认为是NLP任务的通用模型,当将光网络等专业领域的复杂任务应用于复杂的任务时,可能会遇到挑战。在这项研究中,我们提出了一个LLM授权光网络的框架,促进了对物理层的智能控制,并通过部署在控制层中的LLM驱动试剂(AI-Agent)与应用层有效与应用层相互作用。A-Agent可以利用外部工具并从专门为光网络建立的综合资源库中提取域知识。这是通过用户输入和精心制作的提示来实现的,从而使控制说明的生成以及在光网络中自主操作和维护的结果表示形式。在本研究中说明了LLM在专业领域的能力,并刺激其在复杂任务上的潜力,执行及时工程的细节,建立领域知识库和实施复杂任务的细节。此外,在两个典型任务上验证了所提出的框架:网络警报分析和网络性能优化。2,400个测试情况的良好响应精度和语义相似性在光网络中具有LLM的巨大潜力。
主要关键词