Loading...
机构名称:
¥ 4.0

生成的人工智能(AI)模型,例如扩散模型和Openai的Chatgpt,正在通过增强诊断准确性和自动化临床工作流程来改变医学。该领域已经迅速发展,从文本 - 仅用于临床文档和决策支持的大型语言模型向多模式AI系统提供,能够在单个模型中整合各种数据模式,包括成像,文本和结构化数据。这些技术的各种景观以及不断上升的兴趣强调了对其应用和潜力进行全面审查的必要性。此范围审查探讨了多模式AI的演变,突出了其在临床环境中的方法,应用程序,数据集和评估。遵守Prisma-SCR指南,我们系统地查询PubMed,IEEE Xplore和Web of Science,优先于2024年底发表的最新研究。严格筛选后,包括144篇论文,揭示了这个动态领域的关键趋势和挑战。我们的发现强调了从单峰方式转变为多模式方法的转变,在诊断支持,医疗报告生成,药物发现和对话性AI方面引起了创新。然而,仍然存在关键挑战,包括整合异质数据类型,改善模型的解释性,解决道德问题以及在现实世界中验证现实世界临床环境中验证AI系统。本评论总结了当前的艺术状态,确定了关键差距,并提供了见解,以指导医疗保健中可扩展,可信赖和临床影响力的多模式AI解决方案的发展。

从大型语言模型到多模式AI

从大型语言模型到多模式AIPDF文件第1页

从大型语言模型到多模式AIPDF文件第2页

从大型语言模型到多模式AIPDF文件第3页

从大型语言模型到多模式AIPDF文件第4页

从大型语言模型到多模式AIPDF文件第5页

相关文件推荐