轮子速度由运行在 32 位微处理器中的模型支持的 PI 环路控制,该微处理器在功率级使用低噪声高效四象限 PWM 方法。轮驱动电子设备包括热保护和过压保护电路。信号接口是 RS422/RS485 级别的标准异步 SCI。它可用于单全双工配置以及半双工总线架构。波特率可调至 1Mbaud。还提供冗余 CAN 总线接口。反作用轮设计保持模块化。通过改变转子几何形状、输入电压范围或通信协议,VRW 特性很容易适应客户需求。可以在扭矩控制模式或速度控制模式下灵活操作。这种反作用轮的标称在轨寿命超过 45,000 小时。
下图显示了 CAIS 总线的最基本配置。数据总线以命令/响应方式同步运行,并通过命令总线和回复总线以全双工方式进行传输。CAIS 是一种确定性总线,它根据格式中放置的采样时间提供连贯数据。数据总线上的信息流由设置数据采集单元 (DAU) 操作模式的广播命令和请求 DAU 特定操作的 DAU 命令组成。因此,回复总线上的所有数据都是来自总线控制器的 DAU 命令的结果。此外,该总线还可用于与其他系统元素(如驾驶舱显示器、记录器)进行通信。这样就可以单点访问各种系统信息,并允许系统监控关键数据,例如飞行员开关活动、飞行员任务屏幕设置和遥测记录器状态。请注意,CAIS 总线不仅可以用作仪表总线,还可以用作全车通信总线。
记录和刺激人类深层大脑活动的技术进步已导致神经科学领域出现重大发现,并促进了神经和精神疾病新疗法的开发。然而,进一步的进展受到设备限制的阻碍,因为无法记录人类自由移动行为期间的单个神经元活动。此外,目前批准用于人类的植入式神经刺激设备刺激可编程性有限,全双工双向功能也受到限制。在本研究中,我们开发了一种可穿戴双向闭环神经调节系统 (Neuro-stack),并用它来记录人类静止和移动行为期间的单个神经元和局部场电位活动。Neuro-stack 具有高度灵活和可定制的刺激能力,为研究疾病的神经生理基础、开发改进的响应性神经调节疗法、探索人类自然行为期间的大脑功能以及跨物种连接数十年的神经科学发现提供了机会。
立方体卫星激光红外交联 (CLICK) 任务将展示推动小型航天器星间通信技术发展的最新技术。该任务的主要目标是在轨演示两颗六单元 (6U) 小型卫星之间的全双工(发送和接收)激光交联,也称为光通信,两颗卫星之间的距离在 15 至 360 英里(25 - 580 公里)之间,数据速率超过 20 兆比特每秒 (Mbps)。该任务还将展示精确的卫星间时钟同步和 10 厘米级的测距。能够发送和接收激光通信的微型光学收发器将在两颗卫星之间形成通信交联,并通过新的精细指向功能支持它们的对准。由于激光通信高数据速率传输的功率效率,微型光学收发器是对射频(RF)技术的改进,这减轻了对小型平台在尺寸、重量和功率方面已经很严格的限制的影响。
摘要。直到最近,飞机内部对联网的需求并不强烈。事实上,通信主要是通过电缆和以太网协议处理的。航空电子嵌入式系统的发展和民用飞机中集成功能的数量改变了这种情况。事实上,这些功能意味着交换数据量大幅增加,从而导致功能之间连接数量的大幅增加。在处理这种新复杂性的可用机制中,我们发现了航空电子全双工交换以太网 (AFDX),这是一种允许模拟源和一个或多个目的地之间的点对点网络的协议。AFDX 的核心思想是虚拟链路 (VL),用于模拟设备之间的点对点通信。主要挑战之一是表明 VL 上数据包的总传送时间受某个预定义值的限制。这是一个困难的问题,还需要提供 AFDX 网络的正式但相当具有发展性的模型。在本文中,我们建议使用基于组件的设计方法来描述模型的行为。然后,我们提出了一种随机抽象,它不仅可以简化验证过程的复杂性,还可以提供有关协议的定量信息。
与开放研究的非营利性AI研究实验室同时翻译技术Kyutai的技术已发布Hibiki,这是一种针对语音到语音翻译的新音频模型。hibiki(日语中的“回声”)可以同时进行翻译,同时保留说话者的声音,并最佳地适应源语音的语义内容。hibiki用目标语言实时生产口头翻译以及书面的翻译。Hibiki目前接受了从法语到英语翻译的培训,在翻译质量,扬声器忠诚度和自然性方面的最先进表现都展示了这一任务。此外,其推理过程的简单性使其与批处理的翻译兼容,以进行有效的在线部署以及实时的实时使用。在Moshi发行仅六个月后,Kyutai的声音AI是全双工口语对话的AI,如今已通过公众共享推理代码,法语到英语模型的权重和技术报告,使Hibiki开创性的技术可用。研究人员和AI社区现在将能够在Hibiki的顶部建立,并将其扩展到其他语言。这是语音技术的新里程碑,它为沟通和可访问性开辟了非凡的机会。
784-1 托管现场以太网交换机。784-1.1 说明。为智能交通系统 (ITS) 项目配备和安装强化的设备级托管现场以太网交换机 (MFES)。确保 MFES 以每秒 100 兆比特的传输速率从远程 ITS 设备安装位置到 ITS 网络主干互连点提供线速快速以太网连接。仅使用符合这些最低规格要求且列在部门批准产品清单 (APL) 上的设备和组件。784-1.2 材料:784-1.2.1 一般要求:确保 ITS 网络管理员能够单独管理每个 MFES 并作为一个组进行交换机配置、性能监控和故障排除。确保 MFES 包含第 2 层以上功能,包括 QoS、IGMP、速率限制、安全过滤和常规管理。确保提供的 MFES 与 ITS 主干以太网网络接口完全兼容且可互操作,并且 MFES 支持半双工和全双工以太网通信。提供 MFES,该 MFES 提供 99.999% 无错误操作,并且符合电子工业联盟 (EIA) 以太网数据通信要求,使用单模光纤传输介质和 5E 类铜传输介质。为每个远程 ITS 现场设备提供交换以太网连接。确保 MFES 的最小平均故障间隔时间 (MTBF) 为 10 年或 87,600 小时,这是使用 Bellcore/Telcordia SR-332 可靠性预测标准计算得出的。784-1.2.2 网络标准:确保 MFES 符合所有适用于以太网通信的 IEEE 网络标准,包括但不限于:1.与快速生成树协议 (RSTP) 一起使用的媒体访问控制 (MAC) 桥的 IEEE 802.1D 标准。2.基于端口的虚拟局域网 (VLAN) 的 IEEE 802.1Q 标准。3.服务质量 (QoS) 的 IEEE 802.1P 标准。4.局域网 (LAN) 和城域网 (MAN) 接入和物理层规范的 IEEE 802.3 标准。5.IEEE 802.3u 补充标准,涉及 100 Base TX/100 Base FX。6.IEEE 802.3x 标准,涉及全双工操作的流量控制。784-1.2.3 光纤端口:确保所有光纤链路端口在单模式下以 1,310 或 1,550 纳米运行。确保光纤端口仅为 ST、SC、LC 或 FC 类型,如计划中或工程师所指定。请勿使用机械传输注册插孔 (MTRJ) 型连接器。提供具有至少两个光纤 100 Base FX 端口的 MFES,能够以每秒 100 兆比特的速度传输数据。确保 MFES 配置了合同文件中详述的端口数量和类型。提供设计用于一对光纤的光纤端口;一根光纤将传输 (TX) 数据,一根光纤将接收 (RX) 数据。
自由空间光通信 (FSOC) 也称为光无线通信,它一直是一个备受关注的话题,因为它利用了红外波段的宽广的未授权频谱,而不是已经拥挤的无线电频谱。当今的 FSO 技术能够在几公里的距离上每秒传输几千兆位的数据。事实证明,FSO 是解决连接问题的唯一可能解决方案,无论在何处安装光纤成本过高或困难重重。DOT 邀请印度初创企业/组织/研究和学术机构参与此合作项目,以开发一种 FSO 解决方案,该解决方案能够在至少 5 公里的距离内提供每波长至少 10G 带宽(全双工)。总带宽将取决于使用的波长数量。潜在参与者应具有光通信相关技术的可证明的专业知识,形式为完全或部分原型光学技术,包括但不限于组件/模块/硬件/软件/子系统或其最终产品。合作开发项目的最终成果应是可商业部署的 FSO 解决方案。项目成果将授权给感兴趣的参与者或第三方,可直接或与系统集成商合作进行大规模生产、营销和为最终用户部署。2)项目描述
CubeSat 激光红外交叉链路 (CLICK) 任务是部署在 6U CubeSat 上的 2U 卫星间链路激光通信终端的技术演示。指向、捕获和跟踪 (PAT) 系统具有 14.6 弧秒的全锥、半功率指向要求,以实现 20 Mbps 的全双工激光通信,范围可达 580 公里或更大。相应的单轴指向要求为 ±5.18 弧秒 (3σ)。PAT 系统利用卫星的姿态控制系统进行粗相对指向,并在有效载荷内使用精指向系统 (FPS) 来减轻残余指向误差并在环境和航天器引起的干扰下保持链路。FPS 使用 MEMS 快速转向镜 (FSM) 来保持发射 (Tx) 和接收 (Rx) 激光信号的对准。本文介绍了 FPS 控制系统的模拟,该系统用于确定指向裕度的改进并对飞行水平控制系统进行原型设计。初步结果表明,由于 FPS 控制误差导致的精细指向误差改善了 28%:从 ±2.27 弧秒 (3σ) 到 ±1.63 弧秒 (3σ),包括光机误差在内的整体精细指向裕度从 0.06% 增加到 5.4%。
MAX3483E 系列器件 (MAX3483E/MAX3485E/ MAX3486E/MAX3488E/MAX3490E/MAX3491E) 是具有 ±15kV ESD 保护、+3.3V、低功耗收发器,适用于 RS-485 和 RS-422 通信。每个器件包含一个驱动器和一个接收器。MAX3483E 和 MAX3488E 具有斜率限制驱动器,可最大程度降低 EMI 并减少由电缆端接不当引起的反射,从而允许以高达 250kbps 的数据速率进行无错误数据传输。部分斜率限制的 MAX3486E 传输速率高达 2.5Mbps。MAX3485E、MAX3490E 和 MAX3491E 的传输速率高达 12Mbps。所有器件均具有增强的静电放电 (ESD) 保护功能。所有发射器输出和接收器输入均采用 IEC 1000-4-2 气隙放电保护 ±15kV,采用 IEC 1000-4-2 接触放电保护 ±8kV,采用人体模型保护 ±15kV。驱动器具有短路电流限制,并通过热关断电路防止过大的功率耗散,该电路将驱动器输出置于高阻抗状态。接收器输入具有故障安全功能,当两个输入都开路时,可保证逻辑高输出。MAX3488E、MAX3490E 和 MAX3491E 具有全双工通信功能,而 MAX3483E、MAX3485E 和 MAX3486E 则设计用于半双工通信。