近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
稀有变异难以检测是传统全基因组关联研究 (GWAS) 面临的问题之一。这一问题与单倍型等由多个等位基因组成的复杂基因组成密切相关。为解决这一问题,已提出了多种单核苷酸多态性 (SNP) 集方法。但这些方法很少与单倍型相关讨论。在本研究中,我们开发了一种新的 SNP 集方法“RAINBOW”,并将该方法应用于基于单倍型的 GWAS,将单倍型块视为 SNP 集。结合单倍型块估计和 SNP 集 GWAS,可在无需先前单倍型信息的情况下进行基于单倍型的 GWAS。我们准备了 100 组稻 (Oryza sativa subsp.) 的模拟表型数据和真实标记基因型数据集。 indica,并对数据集进行 GWAS。我们比较了我们的方法、传统的单 SNP GWAS、传统的基于单倍型的 GWAS 以及传统的 SNP 集 GWAS 的功效。结果显示我们的方法在三个方面优于这些方法:(1)控制假阳性;(2)如果数据集中对因果变异进行了基因分型,则可以不依赖连锁不平衡来检测因果变异;(3)它显示出比其他方法更高的功效,即它能够检测到其他方法未能检测到的因果变异,主要是当因果变异位置非常接近且其作用方向相反时。通过在本研究中使用 SNP 集方法,我们期望不仅可以检测出罕见变异,还可以检测出具有复杂机制的基因,例如具有多个因果变异的基因。 RAINBOW 是作为名为“RAINBOWR”的 R 包实现的,可从 CRAN(https://cran.r-project.org/web/packages/RAINBOWR/index.html)和 GitHub(https://github.com/KosukeHamazaki/RAINBOWR)获取。
现代仪器系统和数据采集系统需要低到中等分辨率、中速的模数转换器 (ADC)。由于这些系统大多是便携式的,因此 ADC 规范对功率和面积参数有严格的要求。尽管传统的逐次逼近寄存器 (SAR) ADC 因结构简单、模拟模块少而在这些应用中很受欢迎,但它们占用的芯片面积很大。传统 SAR ADC 采用二进制加权电容电荷再分配数模转换器 (DAC) [1,2]。传统电容电荷再分配 DAC 的两个主要限制是转换速度和庞大的电容阵列。较大的 MSB 电容限制了转换速度。这种架构中使用的 DAC 电容阵列变得非常笨重。文献中提出了一些新方法来提高 SAR ADC 的速度 [3,4]。此外,还提出了一些用于 SAR ADC 的面积效率高的 DAC 架构 [5-7]。其中一些 ADC 在性能系数 (FOM) 方面优于其他 ADC,但由于所用 DAC 架构的类型,面积效率 (AE) 参数会降低。[8、9] 中的 SAR ADC 将分辨率可变性融入传统电荷再分配 ADC,以适应需要不同分辨率的多种信号,适用于生物医学信号采集系统等应用。
或有意与国防部签订服务提供服务合同的个人。 (6)目前中止招标的单位原则上不允许进行分包。但确有不可避免的理由,有关部委有权暂停提名
Cancer Precision Medicine Co.,Ltd。(以下称为“ CPM”)是我们公司的合并子公司,现已在公共场合
通过培训数据构建预测模型,并通过平滑阈值多变量遗传预测(STMGP)方法预测测试数据表型,其中包含基因环境(GXE)相互作用,其中将GXE相互作用线性添加到具有边际效应的STMGP模型中。数据必须采用Plink二进制格式和边际测试p值(即通过PLINK软件计算每个变体的测试),即使对于具有大量变体的数据,也可以快速计算。通过CP型标准选择最佳的P值截止。可以接受定量和二进制表型,其中必须以PLINK FAM FAM FORGAT或SEPARATE文件(PLINK格式,即FID和IID需要)。环境变量需要通过指定列名来在协变量文件中。
郑山(Div>):美国孟菲斯丹尼·托马斯(Danny Thomas Place)262,美国孟菲斯(Memphis),美国田纳西州38105,圣裘德儿童研究医院应用生物信息学研究中心高级生物信息学研究科学家;电子邮件:cheng.zhong.shan@gmail.com
复杂环境提供结构化但多变的感官输入。为了最好地利用来自这些环境的信息,生物体必须进化出预测新刺激后果并根据这些预测采取行动的能力。我们提出了神经网络的进化路径,引导生物体从被动行为转变为简单的主动行为,从简单的主动行为转变为基于诱导的行为。基于早期的体外和计算机实验,我们定义了具有尖峰时间依赖可塑性的网络中生物体从被动行为转变为主动行为所必需的条件。我们的研究结果支持特定的进化步骤和四个条件的存在,这些条件是具身神经网络从最初的被动策略进化出预测和归纳能力所必需的。
在这个研讨会中,每个地区和国家的计划团队都决定一个对他们来说重要的故事。变革的故事特定于他们参与该计划的年轻人中所看到的变化及其对医疗保健系统的影响。他们向参加该计划采访的计划的一位年轻领导人讲述了这些故事。