摘要。随着未来几年许多研究反应堆的逐步淘汰,小型和中型中子源的不足是可以预见的。激光驱动的中子源有可能填补这一空白,过去几年激光技术取得了巨大进步。即将推出的具有高达 10 Hz 重复率的拍瓦激光器有望大幅提高中子通量。本文开发并优化了一种装置,用于在激光驱动的中子源上进行中子共振光谱分析。然后在 PHELIX 激光系统的实验活动中对该装置进行了评估。激光强度高达 10 21 W/cm²,ns 预脉冲对比度为 10 -7,用于离子加速,结果为 (1.8±0.7)×10 8 N/sr/脉冲,相当于 4 当量的 (2.3±1.0)×10 9 N。这些脉冲经过调节、准直,并通过飞行时间法进行研究,以表征热中子谱以及信噪比。
光子学方法基于介电和半导体结构中E-和H-型MIE共振的激发已成为过去二十年来研究活动的对象。这些非质子共振技术被认为是创建新的超材料[1-6]并增加光电设备的量子产率[7,8]的途径。在这一领域的一个重要问题是可以设计MIE共鸣的特性。为实施MIE共振工程,可以在介电材料中实施从无定形到结晶状态的可逆过渡。特别是,可以使用结晶和进一步的激光诱导的这些SB 2 S 3谐振器[9]来实现SB 2 S 3纳米磁盘阵列中的可逆MIE共振调节。是一个理论上考虑了球形粒子的光散射,其介电常数在双倍频率下相对于入射光进行了调制,这表明有可能控制球体的MIE共振[10]。
过氧化物酶体增殖物激活的受体伽马共振剂1(PGC-1)家族(PGC-1)由三个涵盖PGC-1α,PGC-1β和PGC-1相关的共同激活剂(PRC)组成的三个成员比四分之一以前。PGC-1是许多重要细胞事件的必不可少的协调员,包括线粒体功能,氧化应激,内质网稳态和炎症。积累的证据表明,PGC-1与许多疾病有关,例如癌症,心脏疾病和心血管疾病,神经系统疾病,肾脏疾病,运动系统疾病和代谢性疾病。检查PGC-1S的上游调节剂和共激活伙伴,并确定由PGC-1的下游效应子调节的关键生物事件,这有助于呈现PGC-1S的精细网络。此外,讨论PGC-1与疾病之间的相关性以及总结针对PGC-1S的治疗有助于制定个性化和精确的干预方法。在这篇综述中,我们总结了有关PGC-1家族以及分子监管网络的基础知识,讨论了PGC-1在人类疾病中的生理病理学作用,回顾PGC-1S的应用PGC-1,包括PGC-1S的诊断和预后价值以及PGC-1S的预后和几种治疗方法以及在临床前研究中的几种疗法以及对未来的一些例子和未来的研究。本综述介绍了将PGC-1靶向疾病治疗的巨大潜力,并希望促进PGC-1作为新的治疗靶标的促进。
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。
使用传统的电子偶极自旋共振 (EDSR) 实现自旋量子比特的高保真控制需要约 1 mTnm −1 的大磁场梯度(这也会将量子比特与电荷噪声耦合)和 1 mV 量级的大驱动幅度。翻转模式是驱动双量子点中电子 EDSR 的另一种方法,其中两个点之间的大位移提高了驱动效率。我们建议在强驱动范围内操作翻转模式,以充分利用两个点之间的磁场差异。在模拟中,降低的所需磁场梯度将电荷噪声的保真贡献抑制了两个数量级以上,同时提供高达 60 MHz 的拉比频率。然而,硅中导带的近简并引入了谷自由度,这会降低强驱动模式的性能。这就需要进行依赖于谷值的脉冲优化,并且使强驱动机制的操作变得值得怀疑。
参量振子的量子动力学越来越受到理论和实验界的关注 [1-16]。在一定程度上,这种兴趣来自于参量振子的新应用,特别是在量子信息领域的应用。在更广泛的背景下,此类振子为研究远离热平衡的量子动力学和揭示其迄今未知的方面提供了一个多功能平台,隧穿新特征和新的集体现象就是例子。动力学特征之一是多态量子系统中详细平衡的出现和特征,这也是本文的动机之一。在很大程度上,参量振子的重要性在于其对称性。此类振子是具有周期性调制参数(如特征频率)的振动系统,其振动频率为调制频率 ω p 的一半。经典上,振动态具有相等的振幅和相反的相位 [17],这是周期倍增的一个基本例子。量子力学上,振动态可被认为是符号相反的广义相干态 [18]。弗洛凯本征态是频率为 ω p / 2 的振动态的对称和反对称组合。一般来说,在量子信息中使用参量振子需要进行破坏其对称性的操作,参见文献 [19]。对称性破坏可以通过在频率为 ω p / 2 处施加额外的力来实现。从经典角度来看,这种力的作用可以从图 1(a) 中理解。由于振动态具有相反的相位,因此力可以与两个状态中的其中一个同相,从而增加其
结果:在Div 5至8的生长锥中,荧光构建体的分布相似。生长锥中TSMOD(28.5 3.6%)的平均FRET效率高于葡萄酒(24.6 2%)和VINTL(25.8 1.8%)(p <10-6)的平均FRET效率。虽然很小,但葡萄酒和VINTL的FRET效率之间的差异具有统计学意义(P <10-3),这表明Vinculin在生长锥中的张力低。用Rho相关激酶抑制剂Y-27632进行了两个小时的治疗不会影响平均FRET效率。生长锥显示出形态学的动态变化,如延时成像所观察到的。Vints FRET效率比TSMOD FRET效率随时间的函数显示出更大的方差,这表明与TSMOD相比,Vints FRET效率更大的葡萄酒效率对生长锥动力学的依赖性更大。
摘要:无标记直接光学生物传感器(如表面等离子体共振 (SPR) 光谱)已成为集中实验室生化分析的黄金标准。基于光子集成电路 (PIC) 的生物传感器基于相同的物理传感机制:衰减场传感。如果能够克服从研究实验室转移到工业应用的挑战,基于 PIC 的生物传感器可以在医疗保健中发挥重要作用,尤其是对于即时诊断。研究正处于这一门槛,这为卫生和环境领域的创新现场分析提供了巨大的机会。通过将创新的 PIC 技术与成熟的 SPR 光谱进行比较,可以更深入地了解它。在本文中,我们简要介绍了这两种技术,并揭示了它们的异同。此外,我们回顾了一些最新进展,并从表面功能化和传感器性能方面比较了这两种技术。
摘要:在散装的声学设备中,传统上,用于流体和微粒处理的声音共振模式在散装压电(PZE)换能器传统上受到激发。在这项工作中,通过三个维度的数值模拟进行了证明,这些模拟集成了PZE薄纤维胶片传感器,构成少于散装设备的0.1%的换能器,同样良好。使用经过良好测试且经过实验验证的数值模型进行模拟。嵌入在MM大小的散装玻璃芯片中的水上填充的直流通道,其用Al 0.6 SC 0.4 N制成的1- l m thick薄纤维传感器作为概念验证示例。计算了声能,辐射力和微粒聚焦时间,并证明与传统的散装硅玻璃设备相媲美,由大量的铅链氨基二硝酸盐传感器所代理的硅玻璃设备。薄纤维换能器在散装声音中产生所需的声学效果,依赖于三个物理方面:薄纤维换能器的平面内表达式在应用的原始电动电动机下,且元素的整个设备,并列出了通用的整个设备。构成设备的大部分部分。 因此,薄片设备对薄膜传感器的Q因子和共振特性非常不敏感。 v C 2021作者。 所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。 https://doi.org/10.1121/10.0005624薄纤维换能器在散装声音中产生所需的声学效果,依赖于三个物理方面:薄纤维换能器的平面内表达式在应用的原始电动电动机下,且元素的整个设备,并列出了通用的整个设备。构成设备的大部分部分。因此,薄片设备对薄膜传感器的Q因子和共振特性非常不敏感。v C 2021作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1121/10.0005624https://doi.org/10.1121/10.0005624
摘要:连续体(FW-BIC)中的Friedrich – Wintgen结合状态在波物理现象的领域特别感兴趣。它是通过属于同一腔的两种模式的破坏性干扰来诱导的。在这项工作中,我们通过分析和数值显示了FW-BIC在T形腔中的存在,该腔由长度为d 0的存根d 0和两个长度d 1和d 2的侧向分支,该腔附着于限定的波导上。整个系统由在电信范围内运行的金属 - 绝缘子 - 金属(MIM)等离子波导组成。从理论上讲,当d 1和d 2相称时,这两个分支会诱导BIC。后者独立于D 0和有限的波导,其中T结构被移植了。通过打破BIC条件,我们获得了等离子诱导的透明度(PIT)共振。坑的共振对波导的介电材料的敏感性可能会被利用,以设计适合感应平台的敏感纳米传感器,这要归功于其很小的足迹。灵敏度为1400 nm/riU,分辨率为1.86×10 - 2 RIU显示出高度的性能水平。此外,该结构也可以用作生物传感器,在其中我们研究了人体中浓度的检测,例如Na +,K +和葡萄糖溶液,这些敏感性分别可以达到0.21、0.28和1.74 nm DL/G。我们设计的结构通过技术发展,并且具有良好的应用前景,作为生物传感器,可检测血红蛋白水平。通过Green功能方法获得的分析结果通过使用COMSOL多物理学软件基于有限元方法来验证。