4. Tu, Q.; Spanopoulos, I.; Hao, S.; Wolverton, C.; Kanatzidis, MG; Shekhawat, GS; Dravid, VP, 探究二维混合有机-无机钙钛矿中的应变诱导带隙调制。ACS Energy Letters 2019, 4 (3), 796-802。5. Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H., 钙钛矿太阳能电池中的应变工程及其对载流子动力学的影响。Nature communications 2019, 10 (1), 1-11。6. Ghosh, D.; Acharya, D.; Zhou, L.; Nie, W.; Prezhdo, OV; Tretiak, S.; Neukirch, AJ,混合钙钛矿中的晶格扩展:对光电特性和电荷载流子动力学的影响。物理化学快报 2019,10 (17),5000-5007。7. Nishimura, K.;Hirotani, D.;Kamarudin, MA;Shen, Q.;Toyoda, T.;Iikubo, S.;Minemoto, T.;Yoshino, K.;Hayase, S.,Sn-钙钛矿太阳能电池的晶格应变与效率之间的关系。ACS 应用材料与界面 2019,11 (34),31105-31110。8. Zhao, J.;Deng, Y.;Wei, H.;Zheng, X.;Yu, Z.;Shao, Y.;Shield, JE; Huang, J., 应变混合钙钛矿薄膜及其对钙钛矿太阳能电池固有稳定性的影响。Science advances 2017, 3 (11), eaao5616。9. Liu, Y.; Collins, L.; Proksch, R.; Kim, S.; Watson, BR; Doughty, B.; Calhoun, TR; Ahmadi, M.; Ievlev, AV; Jesse, S.; Retterer, ST; Belianinov, A.; Xiao, K.; Huang, J.; Sumpter, BG; Kalinin, SV; Hu, B.; Ovchinnikova, OS, CH3NH3PbI3 钙钛矿中铁弹孪晶畴的化学性质。Nature Materials 2018, 17 (11), 1013-1019。10. Bush, KA; Rolston, N.; Gold-Parker, A.; Manzoor, S.; Hausele, J.; Yu, ZJ; Raiford, JA; Cheacharoen, R.; Holman, ZC; Toney, MF,钙钛矿薄膜形成过程中控制薄膜应力和起皱。ACS Energy Letters 2018, 3 (6), 1225-1232。11. Rolston, N.; Bush, KA; Printz, AD; Gold ‐ Parker, A.; Ding, Y.; Toney, MF; McGehee, MD; Dauskardt, RH,钙钛矿太阳能电池中的工程应力以提高稳定性。Advanced Energy Materials 2018, 8 (29), 1802139。12. Liu, Y.; Ievlev, AV; Collins, L.; Belianinov, A.; Keum, JK; Ahmadi, M.; Jesse, S.; Retterer, ST; Xiao, K.; Huang, J., 金属卤化物钙钛矿中的应变-化学梯度和极化。先进电子材料 2020,6 (4),1901235。 13. Jacobsson, TJ;Schwan, LJ;Ottosson, M.;Hagfeldt, A.;Edvinsson, T.,利用 x 射线衍射确定甲基铵铅钙钛矿中的热膨胀系数并定位温度诱导的相变。无机化学 2015,54 (22),10678-10685。 14. Rolston, N.;Bennett-Kennett, R.;Schelhas, LT;Luther, JM;Christians, JA;Berry, JJ;Dauskardt, RH,关于“光诱导晶格膨胀导致高效率钙钛矿太阳能电池”的评论。 Science 2020, 368 (6488)。15. Tsai, H.;Asadpour, R.;Blancon, J.-C.; Stoumpos, CC; Durand, O.; Strzalka, JW; Chen, B.; Verduzco, R.; Ajayan, PM; Tretiak, S.,光诱导晶格膨胀可实现高效钙钛矿太阳能电池。Science 2018,360 (6384),67-70。16. Tsai, H.;Nie, W.;Mohite, AD,对“光诱导晶格膨胀可实现高效太阳能电池”评论的回应。Science 2020,368 (6488)。17. Liu, Y.;Ievlev, AV;Collins, L.;Borodinov, N.;Belianinov, A.;Keum, JK;Wang, M.;Ahmadi, M.;Jesse, S.; Xiao, K., 有机-无机杂化钙钛矿中的光-铁相互作用。先进光学材料 2019, 7 (23), 1901451。18. Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P., 有机-无机铅卤化物钙钛矿中的巨光致伸缩。自然通讯 2016, 7 (1), 1-8。
当印度总理纳伦德拉·莫迪发表 Panchamrit 气候行动声明时,这是印度和世界可再生能源的决定性时刻,这些声明承诺到 2030 年达到 500 吉瓦非化石能源容量并实现该国 50% 的装机电力来自可再生能源。在上届迪拜 COP28 会议上,全球社会呼吁摆脱化石燃料,实现净零排放。印度太阳能公司 (SECI) 在印度太阳能生态系统中根深蒂固,它借助进步的政策和举措引领潮流,并在该国打造一个有利的可再生能源生态系统。该公司由政府注册成立,旨在为该国的可再生能源打造一个有利的生态系统,涵盖该行业的各个方面。它是推动该行业走向商业化的中心点。现在,在该行业成功转型之后,政府还与其它机构联手,以加速和扩大规模,实现印度的清洁能源目标。
Space Rider 是欧洲的太空工厂。其独特的无人驾驶配置使其有别于新的私人空间站和货运飞船,因为它加速了自主制造、在轨服务、高温炉、更复杂病原体的研究,以及许多在没有人类存在的情况下无法实现的活动。
在肠道菌群中,细菌是最近基于非培养的分子技术的出现,例如16S核糖体核糖核酸(RRNA)基因测序和shot弹枪元素分析,允许细菌的表征以及其潜在的作用,而不必在其范围内表征它们,而不必在其范围内进行表征。16S测序放大了这个高度保守的1,500个碱基对基因(在所有细菌和古细菌中发现),以允许属水平鉴定。这在很大程度上被元基因组方法取代,这些方法将样品中所有脱氧核糖核酸(DNA)序列。宏基因组方法提供了更高的系统发育分辨率,从而允许物种水平的鉴定,还可以提供有关细菌基因功能的信息。其他技术,例如转录组学
• 服务提供、轨道机动、姿态控制、合作目标能力; • 能够在轨道上承载和释放其他 PL/飞行器以执行联合行动(减少会合距离和复杂性); • 有可能在重返大气层前不久释放 PL/飞行器,以研究/探索重返大气层阶段和高层大气的控制; • IOD/IOV 和 TRL 提升应用,能够回收经过飞行验证的有价值资产进行检查、进一步分析和重复使用;
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
“我们的研究结果挑战了大脑动力学的传统观点,这种观点通常认为信息处理是局部的,”这项研究的第一作者 Felix Effenberger 说。“相反,我们认为大脑使用波以高度分布式和并行化的方式进行计算。这种基于波的响应产生的干涉模式有利于对刺激特征之间的空间和时间关系进行整体表示和高度分布式编码。”
转录3(STAT3)的抽象信号换能器和激活因子是一个很好的转录因子,它介导了散装急性急性髓细胞性白血病(AML)细胞和白血病干细胞(LSC)中氧化磷酸化和谷氨酰胺摄取(LSC)。STAT3还显示出在AML细胞中的线粒体转移到线粒体,尤其是在丝氨酸727(PSTAT3 S727)残基处磷酸化时。对STAT3的抑制会导致线粒体功能受损并降低白血病细胞活力。我们在线粒体中发现了STAT3与电压依赖性阴离子通道1(VDAC1)的新型相互作用,该通道提供了一种机制,该机制通过该机制调节线粒体功能和细胞存活。通过VDAC1,STAT3调节线粒体中的钙和活性氧(ROS)平衡。STAT3抑制作用还导致LSC的植入潜力显着降低,包括对Venetoclax的主要样品。这些结果暗示STAT3是AML中的治疗靶标。引言急性髓细胞性白血病(AML)是一种遗传异质和高度攻击性的髓样肿瘤,预后不良。1,2 AML的标准治疗历史上由蒽环类和细胞押滨的诱导化学疗法组成,然后与造血干细胞移植或高剂量的细胞移植或高剂量的细胞固结。3最近,随着新颖的靶向疗法的出现,治疗选择扩大了。4-7然而,尽管响应率很高,但复发还是常见的。10,11 LSCs在其对线粒体活性和氧化磷酸化(OXPHOS)的优先依赖方面表现出了独特的脆弱性。6复发性疾病被认为源自抗治疗性白血病干细胞(LSCS)8的静止亚群,与诊断相比,在复发时发现,在复发时发现了更大的丰度,与9-12相比,与生存率负相关。12-14虽然与Venetoclax(VEN)抑制Bcl-2与甲基化剂(HMA)Azacitidine结合使用,但通过抑制OXPHOS表现出对LSC的选择性,但13个耐药性经常通过线粒体代谢或替代性抗副疗法途径的激活而改变。15-19进一步,先前对前线HMA/VEN进展的患者的先前研究表现出非常差的结果,HMA/VEN失败3个月或更短后,生存率中位数。20,21种针对LSC通过其对OXPhos的依赖的新策略具有重大关注,并且在几份报告中已经描述了7,13,22,但是需要进一步的研究来阐明这些观察结果的基础机制。转录3(STAT3)的信号换能器和激活因子已被证明对白血病生成很重要,并且已知在许多AML患者样品和细胞系中都高度表达。23-26在典型上,已知STAT3在残基Tyr 705处进行磷酸化,从而导致二聚化并转移到核中,在该细胞核中它作为调节细胞发育,更新,增殖和细胞死亡的转录因子的作用。24,27-29我们以前的工作还确定了STAT3的转录活性通过MYC-SLC1A5介导的途径调节线粒体功能。26尽管其描述了核作用为转录因子,但STAT3也被发现局部到线粒体。30,31先前的工作提出了线粒体中各种功能,包括调节电子传输链(ETC)活性,30-32线粒体基因的调节,33和线粒体钙通量的调节。34,35,而在Tyr 705(PSTAT3 Y705)和Ser 727(PSTAT3 S727)位点的STAT3磷酸化均在线粒体中都发现了30-32,35,36 Ser 727磷酸化对于调节
癌症治疗[8]。不良,BCl-2相关的死亡启动子,通过调节细胞周期进展,调节乳腺癌细胞的增殖和肿瘤进展,使乳腺癌细胞对化学疗法敏感[24,25]。SSX2相互作用蛋白(SSX2IP)来调节睾丸和恶性细胞中SSX2的活性[26]。许多研究报告说,SSX2IP作为急性髓样白血病相关的抗原是白血病的潜在免疫疗法靶标[27,28]。还推测SSX2IP在胃癌和肝癌的发展和转移中起重要作用[29]。Znf24起着乳腺癌和胃癌肿瘤发展的负调节剂[30,31]。Znf24也充当癌基因并促进了前列腺癌细胞的EMT [32]。但是,
这种材料在有机发光领域具有极高的应用前景。例如,由于量子或电介质限制效应,光学带隙随着有机间隔物之间八面体层数的减少而变宽。[3,4] 最近,发现表面态是由层状钙钛矿的局部结构扭曲引起的。[5] 由于高发射量子效率和光学特性的大可调性,人们致力于利用准二维/三维钙钛矿[6–8]和低维钙钛矿制造发光二极管 (LED)。[9–14] 典型的准二维/三维和低维钙钛矿基 LED 输出高亮度 10 3 – 10 5 cd m − 2 以及 10–20% 的外部量子效率。 [9,12,15,16] 支撑如此高性能的发射机制有多种物理原因。例如,有人提出,低维钙钛矿中激子的高结合能起着重要作用,促进了辐射复合,从而产生了高发射量子产率。[17] 其他研究将高效发射归因于薄膜上不同厚度(或 n 数)的量子阱形成的能量景观,这些量子阱将电荷载流子级联到能量最低的发射位点进行复合。[14]