铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
Ankeny、Munsie 和 Leach (2022) 为 iBlastoids 提出的反思、预期和审议 (RAD) 方法虽然很有价值,但需要一个锚点来确保其方法的每个过程都已充分进行。否则,反思、预期和审议可能会偏离航向或过早结束。我们建议将 RAD 方法锚定到复杂性的道德原则上;(当前或潜在的) 类器官实体在本体论和认识论上越复杂,就越需要对该实体进行道德考量。基于 Preiser 和 Cilliers (2010) 的观点,类器官实体的复杂性可以有两个关键要素;类器官实体的特征和功能(本体论复杂性),以及我们目前对类器官实体的理解的功能(认识论复杂性)。这些复杂程度越高,RAD 方法就越需要关注这些要素——以免我们忽略潜在的道德显著特征、功能或知识。例如,对于肠道类器官,反思、预期和审议可能不需要像对于脑类器官、iBlastoids 或多细胞工程化生命系统 (M-CELS) 那样强大 (Sample 等人,2019)。这至少部分是因为脑类器官、iBlastoids 或 M-CELS 等类器官实体的复杂程度超过了肠道类器官。此外,它们的复杂特征和功能中有一些元素可能被视为道德显著的。因此,RAD 流程需要更多时间和精力来解决这些特征、功能和目前的理解。负责任的研究创新 (RRI) 框架的先前迭代将重点放在更好地
基因组分析是许多微生物学研究人员日常工作的一部分。这些分析经常揭示以不确定功能编码蛋白质的基因,对于许多细菌物种,这些未知基因构成了其基因组编码序列的显着比例。由于这些基因没有定义的功能,因此在分析中通常会忽略它们。实验确定基因的功能可能具有挑战性;但是,生物信息学工具的持续进步,尤其是在蛋白质结构分析中,使得逐渐更容易地将功能分配给假设序列。利用各种互补工具和自动化管道来注释假设序列,最终可以增强我们对微生物功能的理解,并为新的实验室实验提供方向。
7月31日,在2024年巴黎奥运会期间,高水平防御运动员(SHND)中士Léo Bergère获得男子铁人三项比赛铜牌。这是法国历史上该项目获得的首枚奥运奖牌。紧随贝尔热尔中士之后的是他的战友皮埃尔·勒·科尔中士,他位列第四。三名法国选手均为陆军高水平国防运动员。
为什么大脑有抑制连接?为什么深度网络有负权重?我们从表示容量的角度提出了一个答案。我们认为表示函数是(i)大脑在自然智能中的主要作用,以及(ii)深度网络在人工智能中的主要作用。我们对为什么有抑制/负权重的答案是:学习更多函数。我们证明,在没有负权重的情况下,具有非递减激活函数的神经网络不是通用近似器。虽然这对某些人来说可能是一个直观的结果,但据我们所知,无论是在机器学习还是神经科学中,都没有正式的理论来证明为什么负权重在表示容量的背景下至关重要。此外,我们还对非负深度网络无法表示的表示空间的几何特性提供了见解。我们期望这些见解将使人们对施加于权重分布的更复杂的归纳先验有更深入的理解,从而实现更高效的生物和机器学习。
Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
微管抽吸(MPA)是量化生物样品的18种机械性能的黄金标准之一,从细胞膜尺度到多细胞19组织至关重要。然而,依靠对单个自制玻璃移液管的操纵,MPA 20遭受低吞吐量和无自动化的影响。在这里,我们介绍了滑动插入21个微目抽吸方法(SIMPA)方法,该方法允许并行化和自动化,这要感谢22在微流体通道内通过光刻术获得的管状移液器的插入。23我们通过探测囊泡来测量24个膜弯曲和拉伸模量,以及通过量化3D细胞聚集体的25个粘弹性来显示其在脂质双层水平上的应用。这种方法为高通量开辟了道路,在动态物理化学刺激下,从囊泡和27个单个细胞到细胞聚集体到细胞聚集体和外植物的多种生物样品的定量机械测试。28
摘要:氧与氧气消耗量增加的有限扩散导致大多数固体恶性肿瘤的慢性缺氧。已知这种氧气的稀缺性会诱导辐射势并导致免疫抑制的微环境。碳酸酐酶IX(CAIX)是一种酶,充当低氧细胞中酸性输出的催化剂,是慢性缺氧的内源性生物标志物。这项研究的目的是开发一种放射标记的抗体,该抗体识别出鼠类caix可视化慢性肿瘤模型中的慢性缺氧,并研究这些低氧区域中的免疫细胞群体。将一种抗MCACIS抗体(MSC3)偶联到二乙基三环乙酸乙酸(DTPA),并用依赖二醇标记为111(111英寸)。使用流式细胞仪确定鼠肿瘤细胞上的CAIX表达,并在竞争性结合测定中分析了[111 in] In-MSC3的体外亲和力。进行了体内生物分布研究,以确定体内放射性分布。CAIX +肿瘤分数通过MCAIX微光谱/CT确定,并使用免疫组织化学和自身自显影分析肿瘤微环境。我们表明,[111 in] In-MSC3在体外与表达Caix(Caix +)鼠细胞结合,并在体内积聚在Caix +地区。我们优化了[111 in] In-MSC3用于临床前成像的使用,以便可以将其应用于合成小鼠模型中,并表明我们可以通过Vivo McAix Micropect/CT进行定量区分具有不同CAIX +分数的肿瘤模型。对肿瘤微环境的分析确定这些Caix +区域被免疫细胞浸润较少。这些数据共同表明,McAix Microspect/CT是一种敏感技术,可视化缺氧的Caix +肿瘤区域,在合成小鼠模型中表现出降低免疫细胞的浸润。将来,该技术可能会在针对缺氧或减少缺氧治疗之前或期间可视化CAIX表达。因此,它将有助于优化翻译相关的合成小鼠肿瘤模型中的免疫和放射疗法功效。关键词:碳酸酐酶IX,缺氧,动物成像,免疫学,肿瘤微环境■简介
帕金森氏病(PD)和相关的神经退行性疾病构成了日益增长的全球健康挑战,影响了数百万的渐进运动和认知能力下降。尽管进行了广泛的研究,但PD基础的精确分子机制仍然难以捉摸,遗传和环境相互作用起着关键作用。了解PD的病理生理学 - 包括对线粒体功能障碍,神经炎症和新型遗传危险因素的新见解至关重要。紧迫的关注是疾病进展和治疗反应的变化。虽然当前的治疗方法提供症状管理,基因治疗中的突破,神经保护剂和精密医学正在重塑景观。此外,在预测疾病发作,进展和治疗结果中,机器学习和人工智能的整合具有变革性的潜力。我们邀请了原始的研究和全面评论,这些研究发现了新的分子靶标,完善诊断生物标志物,并提高AI驱动的预测模型,以彻底改变PD护理并改善患者的结果。
