Mr. Asimus Erik, Surgical pathology Ms. Bennis-Bret Lydie, Biological and Medical Physics and Chemistry Miss Bibbal Delphine, Hygiene and food industry of animal origin Ms. Bouhsira Emilie, parasitology, parasitic diseases Miss Cadiergues Marie-Christine, Dermatology M. Conchou Fabrice, Medical Imagery M. Ruminants M. Cuevas Ramos Gabriel, Equine surgery Ms. Daniels Hélène, Microbiology Infectious-Pathology Miss Deviers Alexandra, Anatomy-Imémagerie Miss Ferran Aude, Physiology M. Guerin Jean-Luc, Breeding and Health Published and Cunicolese M. Jaeg Jean-Philippe, Pharmacie and toxicology Miss Lacoline, Pathological of rent animals Miss Lavoue Rachel, Internal Medicine Mr. Lienard Emmanuel,《寄生学和寄生虫病》,Maillard Renaud先生,反刍动物Meynadier Meynadier Meynadier Meynadier Meynaud-Collard Patricia女士,手术病理学,Mogicicato Giovanni先生,解剖学家禽和养猪场的健康管理Pradier Sophie夫人,Equidae M. Raboisson Didier的内科,动物制作(反刍动物)m。Volmour Romain,微生物学和感染力学先生Verwaerde Patrick先生,麻醉,复苏女士Waret-SzkutaAgnès女士,生产和病理学猪
单位。另一方面,外部规模经济是指不同规模的管理单位在肥料或饲料成本或遵守政府法规的成本等方面的差异。管理单位可能包括一个或多个单一管理或控制的生产单位(Ross,2022 年)。单个农场或生产单位可能包含多块土地,但农场管理单位可能包含多个作为单个经济实体或单位进行管理的农场。虽然大型农业经营的建筑物、设备、土地和其他资本投资相关的固定成本通常较高,但它通常可以使用更高效的生产技术——例如更大的拖拉机、自己的联合收割机或牲畜圈养建筑。然而,工业化农业经营的内部规模经济主要存在,因为专业化、标准化、机械化经营比更依赖熟练劳动力的多样化、个性化经营更容易管理。无论如何,即使对于工业化经营,内部规模经济也是有限度的。随着工业化养殖规模的扩大,它会变得越来越复杂且难以管理。在某个时候,与管理效率下降相关的成本上升超过了将固定成本分摊到额外生产或产出上所带来的总成本的降低。这个点被称为单个养殖业务的“最大规模经济”。拥有或控制多个生产单位单独养殖的更大规模的养殖场可能实现额外的规模经济。这就是为什么多个养猪场、饲养场、家禽舍和种植系统通常由称为“集成商”的单一实体管理或控制的原因。外部规模经济既存在于单个养殖场,也存在于控制多个农场或牲畜生产单位的养殖场。
利比里亚政府通过农业部从世界银行获得了农村经济转型项目(RETRAP)的资金。 RETRAP 的目标是提高所有 15 个县选定价值链(橡胶、木薯、牲畜(家禽和养猪场)、大米和蔬菜)中小农户和农业企业的生产力和市场准入。子部分 2.2 下的 RETRAP 为小农户组织(FBOs)、农业企业、加工商、集成商和其他参与伙伴提供配套补助金。子部分 2.2 下描述的配套补助金 (MG) 计划可能会触发农业商业化、农田扩张、农业基础设施(如仓库、加工厂、电力连接等)的扩建和/或翻新。农业集约化可能引发农药的大量使用,从而对人类健康和生物多样性产生不利影响。对家禽和养猪业的支持将产生动物粪便(粪肥),如果管理不善,这些粪便可能会污染地下水和地表水,并导致温室气体排放。同样,加工设施(例如 MG 计划下的木薯加工)产生的废水可能导致水污染、富营养化和社区难看的景象。在过去 20 个月中,已向已批准的受助人发放了赠款,子项目正在实施中。所有这些都对人类和环境构成潜在的风险和危害。因此,农业部通过项目实施部门委托进行环境审计,以评估项目活动的实施情况,并确定是否存在保障措施漏洞、投诉或不满、冲突和分歧,以及是否有有效的申诉补救机制来解决冲突。此次审计的结果将为未来的项目提供参考
梭状芽胞杆菌艰难梭菌(以前是艰难梭菌)是抗生素 - 腹泻腹泻的常见原因,它会导致严重的死亡率和发病率以及医疗保健系统的高成本[1,2]。在千年开始时,PCR核糖型(RT)027在医疗保健环境中的传播将焦点放在c上。艰难梭菌感染(CDI)作为医生疾病[3]。近年来,已经观察到与社区相关的CDI发生率的升高[4]。C的流行病学研究最常见的方法。艰难梭菌,例如PCR核分型和多焦点序列分型(MLST),仅提供适度的分辨率,不足以进行爆发研究[5]。使用核心基因组MLST(CGMLST)或单核苷酸多态性(SNP)分析来分析由整个基因组测序(WGS)产生的数据[6],并且揭示了医疗保健系统中仅考虑CDI病例的一小部分的传播。这表明无症状的运输或环境源在C的传播中起着重要作用。艰难梭菌[7]。梭状芽胞杆菌艰难梭菌也可以由猪和其他牲畜携带[8],并已成为新生小猪搜查的原因[9]。使用WGS [10,11]中描述了活股和人之间的潜在传播,尤其是RT078被认为具有人畜共患潜力[12]。2011年,这与瑞典南部的一次基于医院的暴发有关[15]。簇,该RT是2009 - 2013年瑞典人类中最常孤立的RT之一[15]。在同一时间,这是瑞典中部多种繁殖农场的小猪中唯一发现的RT [16]。尚未为RT046建立人畜共患关系,并且克隆多样性,农场内随时间变化,或者目前已知与人类分离株的关系。这项研究的目的是检测瑞典养猪场和人类CDI病例之间RT046的传播,并使用WGS研究猪群中的RT046多样性。使用两个CGMLST方案和一项SNP分析进行了多个分析策略。
个人简历 姓名:Wongkot Wongsapai 职位:助理教授 地址:清迈大学工程学院机械工程系,239 Suthep, Muang, Chiang Mai 50200 泰国 电话 +66-53-944-146 传真:+66-53-944-145 电子邮箱:wongkot@eng.cmu.ac.th Wongkot Wongsapai 毕业于清迈大学机械工程系,并取得 AIT 能源经济与规划高级研究证书。凭借二十多年的从业经验,他参与过来自不同组织的 120 多个能源项目,例如世界银行、IEA、giz、JICA、ERIA、泰国能源部,主要分为四类;即 (i) 工业、服务业和家庭部门的能源效率提高,包括开发该国指定工厂和建筑物的数据库系统 (ii) 沼气和生物质的可再生能源技术,(iii) 能源政策和规划,以及 (iv) 温室气体管理,特别是 NAMA NDC 和 MRV 以及该国的边际减排成本 (MAC)。自 2019 年起,他还担任能源部能源部门气候变化国家工作组。他还是泰国小规模牲畜废物管理计划的项目经理,该计划是泰国第一个清洁发展机制活动计划 (CDM-PoA)。在世界银行的支持下,养猪场产生的沼气每年最多可产生 360,000 吨二氧化碳碳信用额。他还指导了世界银行的市场准备伙伴关系 (PMR),负责制定泰国主要工业和商业部门的能源效率绩效基线和目标设定。他的专长还包括制定能源和气候变化问题的能力建设计划,他是能源领域国家气候变化技术需求评估 (TNA) 的项目经理。在学术方面,他发表了许多国际论文,包括 ISI 和 Scopus 索引的《能源政策》、《能源报告》等。他是国际能源署 (IEA) 出版物《泰国电力部门的碳定价》的合著者,该出版物于 2021 年 3 月推出。教育:1994 年工学学士(机械工程,清迈大学)。1997 年工学硕士(机械工程,清迈大学)。2005 年高级研究证书(能源经济与规划),亚洲理工学院 (AIT) 2012 年注册培训师:温室气体协议(由 WRI 和 WBCSD 颁发)
1-1 印第安纳州运营中的大型太阳能发电场 ...................................................................................... 10 1-2 印第安纳州在建的公用事业规模光伏项目 ........................................................................ 10 1-3 印第安纳州已批准但尚未开工的公用事业规模光伏项目 ................................................ 11 2-1 风能资源分类 ............................................................................................................. 22 2-2 美国风电排名:前 25 个州 ............................................................................................. 33 2-3 海上风电容量目标和要求 ............................................................................................. 35 2-4 印第安纳州风电场; 2-5 印第安纳州公用事业公司签订的风能购买协议 ...................................................................... 38 2-6 印第安纳州风电场签订的风能虚拟购买协议 ...................................................................... 39 3-1 综合生物炼制项目 ...................................................................................................... 53 3-2 商业化综合生物炼制项目 ............................................................................................. 54 3-3 印第安纳州的乙醇工厂 ...................................................................................................... 58 3-4 印第安纳州生产柳枝稷的平均农场交货成本(美元/吨) ............................................. 62 3-5 野猫溪流域生产玉米秸秆、柳枝稷和芒草的类别成本 ............................................................................................................................................. 63 4-1 根据 2016 年十亿吨研究基准假设,按特定价格和年份对二次农业废弃物潜力的总结 ............................................................................................................. 73 4-2 美国 75 个城市固体废弃物能源工厂的位置 ............................................................................................................. 76 4-3 发电潜力最大的十大州来自养猪场和奶牛场的碳足迹...................................................................................... 78 4-4 美国废水处理热电联产系统...................................................................................... 79 4-5 印第安纳州垃圾填埋场的发电厂...................................................................................... 81 4-6 沃巴什谷电力协会垃圾填埋场电力项目.................................................................... 81 4-7 印第安纳州垃圾填埋场的潜在发电能力.................................................................................... 82 4-8 印第安纳州运行中的厌氧消化器.................................................................................................... 83 4-9 印第安纳州浓缩动物饲养场的潜在发电能力.................................................................... 84 4-10 印第安纳州污水处理厂的潜在发电能力…….................................................................. 85 5-1 美国 CSP 电厂的预计资本成本............................................................................................................................................. 97 5-2 美国正在运营的聚光太阳能发电厂 .............................................................. 101 5-3 美国已不再运营的聚光太阳能发电厂 .............................................. 102 5-4 美国境外在建的聚光太阳能发电厂 ................................................ 103
发表论文:•Bai,B。*,Dai,H.,Zhang,D.J.,Zhang,F。和Hu,H。(2022)。算法工作分配对公平感和生产力的影响:实验实验的证据。”制造与服务运营管理24(6):3060-3078•Bing,B。*,Dai,H.,Zhang,D.J。和Zhang,F。算法工作分配对公平感和生产力的影响:实验实验的证据。制造与服务运营管理(第1卷24:6)。•Chen,X。*,Feldman,J.,Jung,S.H。和Kouvelis,P。(2022)。联合库存选择和在线资源分配问题的近似方案。生产和运营管理31(8)3143-3159。•Dong,L.,Jiang,P。*和Xu,F。(2023)。可追溯性技术在食品供应链网络中采用的影响。管理科学69(3)1518-1535。•Dong,L.,Shi,D。*和Rashkova,I。(2022)。发展经济体中的食品安全审核:权力下放与集中化,制造和服务运营管理。•Dong,L.,Shi,D。*和Zhang,F。(2021)。3D打印和产品分类策略。管理科学。•郭,X。*,Kouvelis,P。和Turcic,D。(2022)。“以制造商为中心的双通道中的定价,质量和库存决策。”制造与服务运营管理24(4)2116-2133。•郭,X。*,Kouvelis,P。Turcic,D。(2022)。•刘,Y。*,Kouvelis,P.,Qiu,Y。(卷以制造商为中心的双渠道,制造与服务运营管理中的定价质量和放养决策:24(4),2116-2133。*和Turcic,D。(2023)。管理养猪场的运营面向波动市场:库存和销售策略,制造和服务运营管理。25:5)。 •刘,Z。 *,张,D.J。 和Zhang,F。(2021)。 零售平台上的信息共享。 制造与服务运营管理23(3)606-619。 •WI。 X. *,Zhang,F。和Zhou,Y。 (2022)。 品牌溢出作为营销策略。 管理科学68(7)5348-5363。25:5)。•刘,Z。*,张,D.J。和Zhang,F。(2021)。零售平台上的信息共享。制造与服务运营管理23(3)606-619。•WI。X.*,Zhang,F。和Zhou,Y。(2022)。品牌溢出作为营销策略。管理科学68(7)5348-5363。
1-1 印第安纳州光伏总装机容量 ................................................................................................ 9 1-2 净计量下签约的可再生能源发电容量 ........................................................................ 10 1-3 上网电价下签约的可再生能源发电容量 ................................................................ 10 1-4 印第安纳州在建的公用事业规模光伏项目 ...................................................................... 11 1-5 印第安纳州已批准但尚未开工的公用事业规模光伏项目 ...................................................... 11 1-6 正在等待 IURC 批准的公用事业规模光伏项目 ............................................................. 12 2-1 风能资源分类 ............................................................................................................. 22 2-2 美国风电排名:前 25 个州 ............................................................................................. 33 2-3 东海岸各州的海上风电容量目标 ............................................................................. 35 2-4 印第安纳州风电场; 2-5 印第安纳州公用事业公司签订的风能购买协议 ...................................................................... 38 2-6 印第安纳州风电场签订的风能虚拟购买协议 ...................................................................... 39 3-1 综合生物炼制项目 ...................................................................................................... 53 3-2 商业化综合生物炼制项目 ............................................................................................. 53 3-3 印第安纳州的乙醇工厂 ...................................................................................................... 57 3-4 印第安纳州生产柳枝稷的平均农场交货成本(美元/吨) ............................................. 62 3-5 野猫溪流域生产玉米秸秆、柳枝稷和芒草的类别成本 ............................................................................................................................. 62 4-1 根据 2016 年十亿吨研究基准假设,按特定价格和年份对二次农业废弃物潜力的总结 ............................................................................................................................. 73 4-2 美国 75 个城市固体废物能源工厂的位置 ............................................................................................................. 76 4-3 发电潜力最大的十大州来自养猪场和奶牛场的垃圾焚烧发电厂..................................... 78 4-4 美国废水处理热电联产系统..................................................... 79 4-5 印第安纳州垃圾填埋场的发电厂........................................................ 81 4-6 沃巴什谷电力协会垃圾填埋场电力项目........................................................ 81 4-7 印第安纳州垃圾填埋场的潜在发电能力..................................................... 82 4-8 印第安纳州运行中的厌氧消化器.....................................................................4-9 印第安纳州集中动物饲养场的潜在发电能力......................................................................................................................... 84 4-10 印第安纳州污水处理厂的潜在发电能力...................................................................................................... 85 5-1 美国 CSP 电厂的预计资本成本......................................................................................................................... 97 5-2 美国正在运营的聚光太阳能发电厂.................................................................................................... 101 5-3 美国已不再运营的聚光太阳能发电厂.................................................................................................... 102
摘要 人畜共患病占新发传染病的 60%,其中 70% 来自野生动物。蝙蝠是许多传染源的宿主,特别是导致人类人畜共患病的病毒,如埃博拉病毒、尼帕病毒或亨德拉病毒。在过去的二十年中,源自蝙蝠的新病毒在人类和动物种群中出现,对公众和兽医健康以及经济产生了重大影响。严重急性呼吸综合征 (SARS)、中东呼吸综合征 (MERS) 和急性猪腹泻综合征 (SADS) 等冠状病毒 (CoV) 的情况尤其如此,它们导致数千人死亡以及大量死亡。养猪场的死亡率。尽管大量研究已在全球范围内发现了蝙蝠冠状病毒,但目前对热带岛屿生态系统中冠状病毒出现的多样性和风险的了解仍有待准确评估。本论文的目的是研究蝙蝠种群中冠状病毒的生态和进化。最初,我们对宿主接触 x CoV 的程度以及这些病毒在西印度洋岛屿的系统发育地理学背景下的进化历史感兴趣。基于对 1088 个样本的分子生物学分析,这项研究首次强调了 εayotte、εozambique、留尼汪岛和马达加斯加的食虫蝙蝠中存在 CoV。蝙蝠感染冠状病毒的总体患病率为 8.0% ± 1.2%,非洲大陆和岛屿之间以及蝙蝠科之间也存在显着差异。我们发现了 α-CoV 和 β-CoV 的巨大遗传多样性,其中一些在系统发育上与人类 CoV 接近(例如HCoV-NL63、HCoV-229E、MERS-CoV)。最后,这些 CoV 在系统发育上由蝙蝠家族构成,支持西印度洋蝙蝠与其 CoV 之间共同进化的悠久历史。然后,我们对留尼旺岛特有物种小莫洛瑟尔 (Mormopterus francoismoutoui) 产妇群体中 CoV 感染的动态进行了纵向研究。基于对环境样本(粪便和鸟粪)中病毒基因组的检测,我们探讨了连续两年内人口结构对感染动态的影响。结果显示,蝙蝠感染率在季节变化中存在非常明显的变化,存在两个感染高峰:在产房洞穴定殖期间(与宿主密度增加有关),以及大约一个月分娩后(与新生儿免疫力丧失有关)。所有这些工作表明,西印度洋蝙蝠体内冠状病毒的进化主要是由于宿主与其病毒之间的共同进化,尽管岛屿环境也可能导致蝙蝠家族内岛屿内的物种形成。在种群水平上影响感染动态的生态和生物因素的识别突出表明,冠状病毒传播给其他宿主的风险因每个岛屿上现有的蝙蝠群落而异,也取决于宿主种群的结构和它的时间变化。
简介爱丽丝湖保护区是一个约 129.5 英亩的自然区域,位于主校区的西南部,北面和西面以博物馆路为界,南面以莫里路为界,东面以南北大道为界。连同比文斯湾周围的自然区域,这个保护区拥有主校区最重要和最多样化的环境资源。这一判定是基于该地区相对较大的面积、社区类型的混合、未开发的海岸线缓冲区和大型水体的存在。2000-2010 总体规划和 1987 年雨水总体规划将爱丽丝湖和休姆池及其周围的高地和湿地确定为保护区(保护区 8、9、10 - 湿地保护区 - 8 和 10)。在这个计划中,所有相邻的高地和湿地都被划入一个保护区。保护区内有一座城市公园,即大学花园,也被称为药用花园,因为园内生长着一些具有治疗功效的植物。自然区域清单水资源正如 CALM 介绍中更详细描述的那样,爱丽丝湖是主校区大部分雨水的接收体,基本上是作为大学的雨水设施(这是被允许的)。Fraternity Woods、Graham Woods、Rietz Ravine Woods、Green Pond、Bartram-Carr Woods 和爱丽丝湖南部都有溪流(一些是间歇性的)流入湖中。此外,雨水从校园各处分散的其他间歇性溪流和涵洞排入湖中。爱丽丝湖流域是一个封闭的盆地,主要出口是通过湖中的排水井,安装这些井是为了缓解洪水。在安装这些井之前,爱丽丝湖会排入与排水井非常相似的落水洞。其中一个水槽位于现在的 Sweet Pond,另一个水槽毗邻 Greenhouse Woods 的大学高尔夫球场。Sweet Pond 水槽在 20 世纪 40 年代被封闭,以防止废水直接补给含水层。Greenhouse Woods 附近的水槽被认为仍然活跃,但只有在大雨期间,当排水井无法跟上流入湖中的水量时,爱丽丝湖的水才会流入该地区。最初(1900 年),几乎所有落在农村农田和长叶松林(后来成为佛罗里达大学校园(1906 年))上的雨水都排入位于 WWTP 正东的开放式石灰岩水槽,称为 Sweet Sink。1906 年至 1947 年间,所有 UF WWTP 废水(原水至滴滤器)都直接排放到该水槽。1947 年,水槽入口处修建了护堤和混凝土墙。雨水和处理过的废水从 Sweet Sink 转移到被称为爱丽丝湖的小池塘。湖面水位开始上升。到 20 世纪 50 年代初,随着更多的径流流入湖中,湖边地带从田地变成了沼泽。1956 年,随着 J Hillis Miller 健康中心的竣工,11 MGD 的冷却水排放,由于健康中心的热注入井故障,这些水不得不转移到湖中。湖西、北和东的邻近地区,包括 Radio Road(现为 Museum Road)开始被淹没。佛罗里达大学高尔夫球场(建于 1927 年)被迫停止使用几条球道。养猪场(位于 34 街的 McGuire Village 已婚学生宿舍)变成了沼泽,猪无法生存。不断上升的湖面水位威胁到医院和污水处理厂。为了阻止湖面上升并将其恢复到 1932 年的水平,1959 年在湖的西端建造了两个新的 5,000 gpm 补给井。这两口补给井继续用作本报告中的注入井 R-1 和 R-2。