可导致严重的肺炎,肺功能障碍和多个器官衰竭,可能是致命的(1)。目前尚无美国食品药品监督管理局 - 在整个范围内批准患有冠状病毒病患者(COVID-19)的疗法。然而,几种实验方法,包括重新利用RNA聚合酶(抑制抗病毒剂),已改善了COVID-19患者的健康状况(2)。在东南亚中,一种核苷类似物的利巴韦林的组合治疗,以及两种用于治疗人类免疫降低病毒(HIV)的非核苷抗病毒剂(HIV)在轻度至微型患者中表现出了一些希望(3),同样是一项研究的研究,同样是一项研究的研究,同时又采用了另一项基于核苷的抗病毒剂抗病毒剂(4)。在美国,到目前为止,最有希望的药物治疗是Remdesivir(GS-441524)。一项多站点试验表明,对Remdesivir的治疗与感染SARS-COV-2的住院患者的快速康复有关,这促使美国食品和药物管理局于2020年5月1日允许紧急使用该药物进行COVID-190(5)。尽管有这些有希望的最近发展,但可以帮助临床医生预测哪些患者最有效反应的策略仍然是敷衍的。患者的优先次序和治疗匹配对于确保治疗剂优化以挫败这一大流行应至关重要。沿着这些路线,我们报告说,最初在急诊科和医疗重症监护室中死于败血症综合征和急性呼吸道衰竭的患者,并具有明显的代谢组合学(6-9)。最引人注目的变化是与从头产生烟酰胺腺嘌呤二核苷酸(NAD; NAD;代谢的关键辅助因子中心),线粒体功能以及ATP产生的ATP产生相关的代谢产生以及表1。在这些患者中,从其正常的生物合成途径中重新穿透了NAD的正常内源性前体,以及NAD,嘌呤和嘧啶核苷的核苷和核苷。此外,结局较差的患者表现出代谢组功能障碍,这似乎是不可逆转的,因为未经处理的三羧酸循环代谢物和肉碱酯的积累证明了这一点。在一起,这些标记不仅预测死亡率,而且表明非保险病具有急性生物能危机,这可能是由于我们在死亡前几天观察到的线粒体功能和代谢的严重下降(6-9)。
1个心脏病学系,阿尔堡大学医院,霍布罗夫18-22,DK-9000 AALBORG,丹麦; 2心血管部门,国王学院医院NHS基金会信托基金会,英国伦敦; 3英国伦敦伦敦国王学院,英国心脏基金会研究中心心血管和代谢医学与科学学院;美国北卡罗来纳州达勒姆市杜克大学医学中心心脏电学生理学4部分; 5纽约州格伦·奥克斯(Glen Oaks)诺斯韦尔健康(Northwell Health)的扎克山区医院精神病学系; 6位于美国纽约州汉普斯特德的Hofstra/Northwell的唐纳德和芭芭拉·扎克医学院精神病学和分子医学系; 7美国纽约州新海德公园的诺斯韦尔健康研究所精神神经科学中心; 8德国柏林柏林Charité大学的儿童和青少年精神病学系; 9 DZPG,德国心理健康中心,合作伙伴网站,柏林,柏林,德国;加拿大安大略省渥太华大学精神病学系10; 11饮食失调治疗的区域中心和轨道:尚普兰第一集精神病计划,心理健康部,加拿大安大略省渥太华医院; 12渥太华医院研究所(OHRI),临床流行病学计划,加拿大安大略省渥太华大学; 13丹麦奥尔堡市奥尔堡大学临床医学系;和丹麦奥尔堡奥尔堡大学医院的14个精神病学
长期以来,全身治疗中寻求的“灵丹妙药”对于大多数组织中的疾病靶点仍未实现,理论上是因为血管内皮阻碍了被动组织进入和完全靶向作用。我们设计了第一个“双精度”双特异性抗体,其中一个臂对可精确结合肺内皮并驱动主动递送,另一个臂对可精确阻断肺组织内 TGF- β 效应功能。靶向小窝进行跨内皮泵送已被证明对于在一小时内将大部分注射的静脉剂量精确递送到肺部以及在鼠肺炎模型中将治疗效力提高 1000 倍以上至关重要。超低剂量(μg/kg)可抑制炎症细胞浸润、水肿、肺组织损伤、疾病生物标志物表达和 TGF- β 信号传导。主动与被动经血管输送精准治疗的巨大优势揭示了一种新的有前景的药物设计、输送和治疗模式,可供推广和临床试验。
Kimberly Thomas 博士实验室提供暑期实习机会,重点研究血小板:内皮细胞相互作用。血小板对血管稳态和内皮屏障功能至关重要。血小板减少症的特征是血小板计数低,会导致某些疾病中的内皮屏障破坏和出血。血小板输注可用于抵消这种情况,但由于血小板保质期短且捐献者较少,因此血小板短缺。Thomas 实验室的研究旨在通过探索冷藏对血管止血和内皮功能的影响来延长血小板保质期。作为实习生,您将在生物安全二级环境中设计和开展实验,利用细胞培养、流式细胞术、qPCR 和显微镜等技术。培训包括数据分析、文档记录和参加实验室会议,以及展示您的研究成果的机会。如有疑问,请联系 Thomas 博士 - KThomas@vitalant.org 。Vitalant 研究所 – Kimberly A. Thomas,博士。
用于治疗脑血管动脉瘤治疗的抽象流动式支架(FDS)是革命性的。但是,这些设备需要全身性双重抗血小板治疗(DAPT)来减少血栓栓塞并发症。鉴于与DAPT相关的缺血性并发症以及发病率和禁忌症的风险,表明FD的安全性和功效而无需DAPT或减少DAPT持续时间。前者可以通过表面修饰来实现,从而通过使用加快内皮生长的涂层来降低装置血栓形成性,而后者可以实现。生物仪通常是通过将亲水性和非相互作用聚合物接种到表面而实现的,可以用通常激活凝血和炎症的循环因子掩盖设备表面的表面。一种策略是模仿无害的循环系统组件的表面。磷酸胆碱和聚糖涂层自然受到启发,并存在于所有真核细胞膜的表面上。另一种策略涉及将合成生物相容性的聚合物刷与破坏正常相互作用与循环蛋白和细胞相互作用的设备的表面联系起来。最后,药物固定还可以赋予抗血栓形成作用,以抵消循环系统中正常的外国反应而没有全身效应。自1960年代以来就探索了肝素涂料,并用于各种血液接触表面。现在正在为神经血管设备探索这个概念。改善内皮化的涂层在临床上不如抗直流涂层那么成熟。冠状动脉支架已使用抗CD34抗体涂层来捕获表面上循环的内皮祖细胞,从而有可能加速内皮整合。同样,正在为神经血管植入物探索带有CD31类似物的涂层。
简介:表征血压(BP),心率(HR),内皮功能和动脉刚度的心血管参数可预测一般人群中的脑血管血管内事件(CCVE)。考虑到中风患者的数据稀少,我们评估了这些参数是急性中风中复发性CCVE的潜在预测指标。患者和方法:这是对前瞻性观察性纵向睡眠效率和中风结果研究的次要结果分析(ClinicalTrials.gov识别:NCT02559739)。该研究连续招募了急性缺血性中风患者。心血管参数(血压变异性[BPV],心率变异性[HRV],内皮功能和动脉僵硬)在中风后的第一周内评估。未来的CCVE记录了3年的随访。多元COX回归分析用于研究有关CCVE风险的48个心血管参数的预后值。结果:在447名招募患者中,有359名包括在此分析中。20%的患者发展了未来的CCVE。分别调整了人口统计学参数,心血管危险因素和平均BP或HR的调整后,急性中风的收缩BP(n = 333)和夜间HR(非线性参数; n = 187)的高可变性。急性中风的内皮功能障碍(n = 105)预测年龄和性别调整后的CCVE风险,但在调整心血管危险因素之后不会。急性中风时的昼夜HR和动脉僵硬与CCVE风险无关。结论:高血压变异性,高夜间HRV和内皮功能有助于中风后未来CCVE的风险。
紧密连接的功能障碍,例如Zonula coccludens蛋白-1(ZO-1)相关的血脑屏障(BBB)渗透性加重在中风的进展中起重要作用。头骨(CEP)是Stephania Cepharantha植物的提取物。但是,CEP对中风和BBB功能障碍的影响先前尚未报道。在这项研究中,我们报告说CEP改善了脑动脉闭塞(MCAO)小鼠模型中神经系统行为的功能障碍。重要的是,CEP通过增加ZO-1的表达来抑制血脑屏障(BBB)过度过敏性。值得注意的是,我们发现CEP抑制了MCAO小鼠皮质中血管内皮生长因子(VEGF)和血管内皮生长因子受体2(VEGFR2)的表达。此外,体外实验的结果表明,CEP的治疗可以改善人弯曲的细胞毒性。3脑微血管内皮细胞针对缺氧/再灌注(H/R)。此外,CEP通过恢复ZO-1的表达来减弱H/R诱导的H/R诱导内皮渗透性的加剧。3细胞。进一步的研究证明,CEP的保护作用是通过抑制VEGF-A和VEGFR2介导的。基于结果,我们得出结论,CEP可以通过保护由VEGF/VEGFFR2/ZO-1轴介导的BBB的完整性,在中风中具有治疗前景。
缩写:AAD,衰老相关疾病;年龄,晚期糖基终产物; ap,apurinic/apyrimidinic; APE1/REF-1,apurinic/apyrimidin inononononononononononocleplease1/redox fastor-1; CM,心肌细胞; CO,一氧化碳; Copp,钴原源性; CP-312,心脏保护剂-312; CPC,心脏祖细胞; CSC,心脏干/祖细胞; CVD,心血管疾病; DHA,二十六烯酸; EC,内皮细胞; ECFC,内皮菌落形成细胞; eNOS,内皮一氧化氮合酶; EPA,二糖酸; EPC,内皮祖细胞; ESC,胚胎干细胞; Foxo,叉子盒; GPX,谷胱甘肽过氧化物酶; GRX,谷毒素; GWAS,全基因组协会研究; H 2 O 2,过氧化氢; H 2 S,硫化氢; HGPS,Hutchinson – Gilford progeria综合征; HIF-1α,缺氧诱导因子-1α; HO-1,血红素氧酶-1; I/R,缺血/再灌注; IPSC,诱导多能干细胞;线粒体电子传输链; MEF,小鼠胚胎成纤维细胞; Mi,心肌梗塞; MPTP,线粒体通透性过渡孔; NAC,N-乙酰L-半胱氨酸; NLRP3,点头样受体蛋白3;不,一氧化氮; NOX,NADPH氧化酶; NRF2,核因子红细胞2相关因子2; NRP1,Neuropilin 1; PM 2.5,颗粒物; PRX,过氧蛋白; PUFA,多不饱和脂肪酸; ROS,活性氧; SASP,与衰老相关的分泌表型; SDF-1,基质细胞衍生的因子1; SMPC,平滑肌样祖细胞;草皮,超氧化物歧化酶; SRF,血清反应因子; T-BHQ,Tert-丁基氢喹酮; TRX,TXN,硫氧还蛋白; TRXR,硫氧还蛋白还原酶; VEGF,血管内皮生长因子; VSMC,血管平滑肌细胞。
败血症期间血液中的CfDNA增加可能是从各种类型的细胞死亡(凋亡和坏死)或细胞损伤中释放出来的(41,42),这在败血症发病机理中是关键作用(43)。然后,cfDNA的丰度可能是败血症诱导的细胞损伤的良好指标,从理论上讲,这与败血症的严重程度相关。的确,由于败血症24小时内CFDNA水平的差异,我们的荟萃分析确定了中等的确定性。与非盐对照或SIRS(ICU病例)相比,败血症患者的CFDNA不仅增加了CFDNA,而且与败血症幸存者相比,CFDNA在脓毒症非活体中也升高。有趣的是,即使在ICU的最早阶段或入院阶段(可能是败血症发作的最接近时间)的CFDNA水平,也能够预测死亡率,如汇总的AUC预测为0.76(95%CI 0.64-0.87)所示);诊所使用的可接受价值(44)。此外,与CFDNA较低的患者相比,入院时最初具有高CFDNA的患者与死亡率更高(28,32)。与没有败血症(ICU病例)的败血症和感染之间的区分(0.80),合并灵敏度(0.81),汇总特异性(0.72)(0.72)和计算DOR(25.03),指示CFDNA作为良好的诊断生物标志物,用于实践(45,46)。较高的CFDNA(与对照组相比)在SIRS患者中,尽管没有可检测到的病原体,但在短期随访期后可能是快速发展成为败血症的早期迹象(23,48)。然而,在败血症与SIRS之间的亚组分析中,败血症歧视的CF-DNA的能力降低了,这是由AUC从0.80(败血症与非sepsis ICU)汇总的0.75(ICU中的Seppsis vs. ICU中的Sirs vs. Sirs vs. ICU中)的代表,支持Sepraps sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis spepis sepis specis spepis specis(47)。同样,某些败血症患者的CFDNA水平较低可能与