摘要:β-内酰胺酶抑制蛋白(BLIP)能有效灭活A类β-内酰胺酶,但效力程度差异很大。了解BLIP在A类β-内酰胺酶抑制中的不同作用可以为抑制剂设计提供参考。然而,基于X射线晶体学获得的静态结构,这个问题很难得到解决。在本研究中,离子迁移质谱、氢氘交换质谱和分子动力学模拟揭示了三种A类β-内酰胺酶的构象动力学,BLIP对它们的抑制效率不同。与TEM1和SHV1相比,PC1的构象更长。几个重要的环区域的局部动力学不同,即突出环、H10环、Ω环和SDN环。与BLIP结合后,这些环协同重排以增强结合界面并使催化位点失活。具体来说,在 SHV1 和 PC1 的突出环中发现构象动力学的不利变化,从而导致结合效果降低。有趣的是,BLIP 上的单个突变可以补偿该区域的不利变化,从而表现出对 SHV1 和 PC1 的增强的抑制作用。此外,还揭示了 H10 区域是一个重要的变构位点,可以调节 A 类 β-内酰胺酶的抑制作用。这表明刚性的突出环和灵活的 H10 区域可能是有效抑制 TEM1 的决定因素。我们的研究结果为 β-内酰胺酶的构象动力学及其与 BLIP 的结合提供了独特而明确的见解。这项工作可以扩展到其他感兴趣的 β-内酰胺酶并启发新型抑制剂的设计。
由于管理机构制定的严格要求,许多制药公司不得不拆除建筑物或拆除生产 β-内酰胺时使用的设备。然而,美国制药行业与 ClorDiSys Solutions, Inc 共同完成的一项研究证实,二氧化氯气体能够灭活 β-内酰胺。测试包括九个灭活周期,其中五个通过了验收标准,即实现 8 种 β-内酰胺 3 个对数级的减少,低于美国食品药品监督管理局 (FDA) 要求的 0.03 ppm 残留检测水平。成功实现所有 8 种 β-内酰胺化合物 3 个对数级减少的灭活周期的累计暴露量均超过 7,240 ppm 小时。这些结果可以得出结论,要实现 β-内酰胺的 3 个对数级减少,需要一个灭活循环,包括在 75% 相对湿度下进行 30 分钟的调节阶段,然后暴露于至少 7,240 ppm-小时的二氧化氯气体中。二氧化氯会破坏 β-内酰胺环并使化合物失活,其方式与青霉素耐药菌的作用方式类似。
I. 目的:剂量优化是临床成功治疗严重感染以及预防耐药性出现的必要组成部分。文献支持延长 β-内酰胺类抗生素的输注时间,以最大限度地发挥时间依赖性杀菌活性并提高达到目标的可能性。对于 β-内酰胺类药物,体外和动物研究表明,细菌杀灭效果的最佳预测指标是游离药物浓度超过生物体最低抑菌浓度 (MIC) 的持续时间 (fT>MIC)。1 本政策旨在通过全院实施延长 β-内酰胺输注,根据其药代动力学和药效学特性优化 β-内酰胺类药物的抗菌活性。
1微生物学和生物医学研究所ACoruña(Inibic),大学医院ACoruña,Coruña,Coruña,西班牙2分子类型参考实验室,并检测Andalusia(Pyrasoa)的抗菌耐药机制。 div>微生物学和传染病的临床管理部门,塞维利亚Virgen Macarena大学医院。 div>西班牙塞维利亚大学塞维利亚生物医学研究所(IBIS),西班牙塞维利亚大学3研究与研究实验室,研究与抗生素和感染的研究实验室和研究,与卫生援助有关马洛卡(Mallorca
抗菌剂的广泛使用导致抗药性细菌迅速增加。在这种背景下,以革兰氏阴性杆菌为代表的多药抗性细菌的检测率正在增加,这对临床实践中的抗感染治疗构成了巨大挑战。根据Chinet(www.chinets.com)的数据,抗菌监测网络,肺炎肺炎的抗性率从2005年的2.9%增加到2021年的24.4%。对于大肠杆菌,对美皮烯的抗性率达到1.4% - 2.1%。肠杆菌对β-内酰胺抗生素的抗性的主要机制是β-内酰胺酶的产生。根据Ambler分类系统:A类(例如,扩展的光谱β-乳糖酰胺酶,ESBLS;和K. pneumoniae Carbapenemases,KPCS,KPCS),B级(E.G. B(E.G.,New Delhi Metallo-Beta-lactacamase s clange n n s Clance),头孢菌素酶)和D类(例如奥沙素酶,奥沙西斯)。对碳苯甲酸肠杆菌(CRE)的一项大型研究调查显示,KPC是最普遍的β-内酰胺酶,NDMS是K.肺炎K.肺炎的第二普遍β-内酰胺酶(Wang等,2018)。近年来,在耐碳青霉烯烃的碳青霉烯氏菌中已经变得越来越普遍(Tangden和Giske,2015; Yin等,2017)。考虑到上述β-乳糖酶的多样性,研究人员已密切关注新型广谱β-内酰胺酶抑制剂的发展(Shlaes,2013; Bush,2015; Vanscoy等,2016; 2016; Bhagwat等,2019)。目前,已销售了非贝氏乳酰胺结构的新型β-内酰胺酶抑制剂,包括阿维比巴坦,里贝塔姆和瓦博尔巴氏菌。Relebactam和Vaborbactam都不能抑制D类β-内酰胺酶。fl058是一种新型的焦油二氯辛烷(DBO)β-内酰胺酶抑制剂,其结构和活性类似于Avibactam。它主要抑制A类,C类和某些D类β-内酰胺酶,但不抑制NDMS(Sharma等,2016)。一项体外敏感性研究(待发表)表明,与阿维巴丹不同,仅FL058在大肠杆菌上具有某些抑制活性。Meropenem与4μg/ml FL058结合使用NDM-生产大肠杆菌(MIC 90 = 0.5 mg/l)的最小抑制浓度(MIC)的显着较低,对NDM产生的NDM抑制作用的作用显着降低,而NDM产生的K. pneumoniae(MIC 50 = 0.25 mg/l,MIC 90 = 4 MIC 90 = 4 MIC 90 = 4 MIC 90 = 4 MIC 90 = 4 M MIC 90 = 4 M MIC 90。一项完整的I期临床试验显示,FL058具有良好的安全性,耐受性和药代动力学(PK)特征(Huang等,2023)。体外药代动力学/药效学(PK/PD)模型已成为筛查β-内酰胺抗生素/β-内酰胺酶抑制剂疗法的剂量方案的重要工具(MacGowan等,2016; Vanscoy et al。,2016; MacGowan et al。它们也可以用来评估暴露于β-内酰胺抗生素/β-乳酰胺酶抑制剂的相关性与菌落计数的变化之间的相关性。随后对暴露响应关系的分析又可以支持剂量选择。鉴于此,这项研究模拟了FL058与MeropeNem在体外模型中结合使用的临床给药方案,以发现两种药物的最佳成分比和最佳的PK/PD指数和两种药物组合治疗的靶标。鉴于此,这项研究模拟了FL058与MeropeNem在体外模型中结合使用的临床给药方案,以发现两种药物的最佳成分比和最佳的PK/PD指数和两种药物组合治疗的靶标。
背景:几种属于伽马变形菌的细菌种群具有内在的 A 类 β-内酰胺酶基因,这些基因可能是进一步传播和获得其他革兰氏阴性菌种的来源。我们在此描述了 KSA-1 A 类 β-内酰胺酶,该基因是在环境肠杆菌目物种 Kosakonia sacchari 的染色体内发现的,该物种最近还被鉴定为 MCR 样粘菌素抗性决定簇的前体。方法:使用 GenBank 数据库进行计算机分析,在 K. sacchari SP1 的染色体内发现了 A 类 β-内酰胺酶基因(GenBank 登录号 WP_017456759)。相应的蛋白质 KSA- 1 与 Citrobacter koseri 的内在 CKO-1 有 63% 的氨基酸同一性,与 TEM-1 有 53% 的氨基酸同一性。使用 K. sacchari DSM 100203 参考菌株作为模板,扩增 bla KSA-1,克隆到质粒 pUCp24 中并在大肠杆菌 TOP10 中表达。从纯化的酶中获得最小抑制浓度和动力学参数。结果:K. sacchari 菌株 SP1 仅对氨基、羧基和脲基青霉素产生抗性。一旦在大肠杆菌中产生,KSA-1 就会表现出典型的克拉维酸抑制广谱 β-内酰胺酶,并伴有特殊的替莫西林抗性特征。使用纯化的 KSA-1 提取物进行动力学测定,结果显示对青霉素和哌拉西林以及弱广谱头孢菌素具有高水解率。抑制常数的测定表明,克拉维酸、他唑巴坦和阿维巴坦的 50% 抑制浓度分别为 2.2、3 和 1.8 nM。对 bla KSA-1 基因周围序列的分析未发现任何可能参与该物种获得这种 β-内酰胺酶基因的移动元素。结论:KSA-1 是一种 A 类广谱 β-内酰胺酶,与已知的广谱或广谱 Ambler A 类 β-内酰胺酶远亲,对替莫西林具有高度耐药性。bla KSA-1 基因可被视为该物种固有的。© 2024 作者。由 Elsevier Ltd 代表国际抗菌化疗协会出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
接受 β-内酰胺类抗生素(包括注射用美罗培南)治疗的患者中,曾报告出现严重且偶尔致命的超敏反应。这些反应更可能发生在对多种过敏原有过敏史的个体身上(见 8.5 上市后不良反应)。有报告称,有青霉素超敏反应史的个体在接受其他 β-内酰胺类抗生素治疗时出现严重反应。在开始注射用美罗培南治疗之前,应仔细询问之前对青霉素、头孢菌素、其他 β-内酰胺类抗生素和其他过敏原的超敏反应。如果对注射用美罗培南出现过敏反应,应立即停用该药。过敏反应需要立即用肾上腺素治疗。可能需要氧气、静脉注射类固醇、抗组胺药和气道管理,包括插管。
1孟加拉国达卡1342的Jahangirnagar大学微生物学系; shantamicro44@gmail.com(A.S.S. ); nahidulmicro44@gmail.com(N.I。 ); ronniebge22@gmail.com(M.A.A。 ); akterkakoli948@gmail.com(K.A。 ); marnusamomo@gmail.com(M.B.H。 ); nahar@juniv.edu(s.n.) 2卫生创新,研究,行动和学习中心 - 孟加拉国1205年,孟加拉国孟加拉国(手性孟加拉国); contact.jubayerhossain@gmail.com 3 Strathclyde药学与生物医学科学研究所,Strathclyde大学,格拉斯哥大学,格拉斯哥G4 0RE,英国4,公共卫生药房和管理部,塞法科·马克加索健康科学大学,塞法科·马克加索健康科学大学,Pretora悉尼,新南威尔士州2052,澳大利亚 *通信:brian.godman@smu.ac.za(B.G. ); salequl@juniv.edu(S.I. );电话。 : +880-1715029136(S.I. );传真: +880-2-7791052(S.I.)1孟加拉国达卡1342的Jahangirnagar大学微生物学系; shantamicro44@gmail.com(A.S.S.); nahidulmicro44@gmail.com(N.I。); ronniebge22@gmail.com(M.A.A。); akterkakoli948@gmail.com(K.A。); marnusamomo@gmail.com(M.B.H。); nahar@juniv.edu(s.n.)2卫生创新,研究,行动和学习中心 - 孟加拉国1205年,孟加拉国孟加拉国(手性孟加拉国); contact.jubayerhossain@gmail.com 3 Strathclyde药学与生物医学科学研究所,Strathclyde大学,格拉斯哥大学,格拉斯哥G4 0RE,英国4,公共卫生药房和管理部,塞法科·马克加索健康科学大学,塞法科·马克加索健康科学大学,Pretora悉尼,新南威尔士州2052,澳大利亚 *通信:brian.godman@smu.ac.za(B.G.); salequl@juniv.edu(S.I.);电话。: +880-1715029136(S.I.);传真: +880-2-7791052(S.I.)
5。Okogeri EI。等。 “尼日利亚临床标本中的klebsiella种类的扩展光谱β-内酰胺酶基因(SHV,TEM,CTX-M和OXA)的横断面研究”。 《美国医学科学杂志》 8(2020):180-186。Okogeri EI。等。“尼日利亚临床标本中的klebsiella种类的扩展光谱β-内酰胺酶基因(SHV,TEM,CTX-M和OXA)的横断面研究”。《美国医学科学杂志》 8(2020):180-186。