我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依熵、量子 R´enyi 熵、迹距离和保真度。所提出的算法在低秩情况下的表现明显优于之前的最佳算法(甚至是量子算法),其中一些算法实现了指数级加速。具体来说,对于秩为 r 的 N 维量子态,我们提出的用于计算加性误差 ε 内的冯·诺依曼熵、迹距离和保真度的量子算法的时间复杂度分别为 ˜ O ( r/ε 2 )、˜ O ( r 5 /ε 6 ) 和 ˜ O ( r 6 . 5 /ε 7 . 5 )。相比之下,先前的冯诺依曼熵和迹距离的量子算法通常具有时间复杂度 Ω( N ),而先前的最佳保真度算法具有时间复杂度 ˜ O ( r 12 . 5 /ε 13 . 5 )。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。这是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。与现有方法相比,我们的技术的优势在于不需要对密度算子进行任何限制;与此形成鲜明对比的是,以前的方法通常需要对密度算子的最小非零特征值有一个下限。
代数方式:克利福德、海森堡和狄拉克对量子基础的遗产。BJ Hiley。2024 年 3 月 1 日摘要。罗杰·彭罗斯两周前的演讲得出结论,广义相对论(等效原理)和量子力学(叠加原理)的基本原理之间的冲突导致了两个现实,一个是经典的,一个是量子的。该论点基于薛定谔图景。在这次演讲中,我着手表明,如果使用海森堡图景,那么只有一个现实。论证从海森堡群结构开始,该结构具有经典和量子域的基本正交和辛对称性。克利福德认识到群在古典物理学中的作用,它在产生众所周知的正交泡利、狄拉克和彭罗斯扭子代数方面起着根本性的作用。辛对称性隐藏在冯·诺依曼的一篇被忽视的论文中,而冯·诺依曼实际上发现了 Moyal 星积代数。冯·诺依曼的论文导致了 Stone-von Neumann 定理,该定理表明,各种图像、薛定谔、海森堡、相互作用等在幺正变换下是等价的。我将展示 Bohm 版本的非相对论薛定谔方程是如何从星积代数中产生的。该乘积必然会引入一种新的能量质量,即“量子势能”,DeWitt (1952) 表明其几何起源与标量曲率张量有关。该结构揭示了共形重标度出现背后的原因,希望能够更好地理解静止质量问题。
对于信息系统,硬件被定义为任何有助于输入、处理、存储和输出活动的机器。同样,对于计算机来说,硬件是执行输入、处理、数据存储和输出功能的设备的集合。换句话说,计算机系统的所有物理单元都构成了计算机硬件。输入设备从外界获取数据,数据存储在内存中。中央处理单元 (CPU) 处理这些数据,各种输出设备提供结果。组件通过系统总线相互通信。每个硬件组件在计算中都发挥着重要作用。即使在今天,系统内组件的排列方式也是冯·诺依曼在 1945 年提出的存储程序计算概念,被称为冯·诺依曼架构。智能设备使用互联网或组织网络,充当信息处理器和信息提供者。智能设备是一种电子设备,通常通过不同的无线协议(如蓝牙、Wi-Fi 等)连接到其他设备或网络,可以在一定程度上交互和自主运行。它们可以用于从智能制造到医疗保健的几乎所有行业,帮助提高效率和优化运营。
信息图被用来讨论两种不同信息测度之间的关系,如冯·诺依曼熵与误差概率[1],或冯·诺依曼熵与线性熵[2]。对于线性(L)熵和冯·诺依曼(S)熵,通常对任何有效的概率分布ρ绘制(L(ρ),S(ρ))图。这里,ρ也可以表示量子系统的密度矩阵(或者更确切地说是具有其特征值的向量),这也是本文的主要兴趣所在。我们特别关注由此产生的信息图区域的边界,其中相关的概率分布(或密度矩阵)将被表示为“极值”。在参考文献[3]中,对两个量子比特的熵进行了比较(有关离子-激光相互作用的情况,另见[4])。在 [5] 中,对任意熵对的信息图进行了详细研究。文中证明了,对于某些条件(线性、冯·诺依曼和雷尼熵满足),极值密度矩阵始终相同。文中给出了反例,但一般来说,偏差会非常小,并且可以安全地假设这些极值密度矩阵具有普适性。在本文中,我们将使用信息图来获取对称多量子系统中粒子纠缠的全局定性信息,该系统由广义“薛定谔猫”(多组分 DCAT)态(在 [6] 中首次引入,作为振荡器的双组分偶态和奇态)描述。这些 DCAT 态原来是 U(D)自旋相干(准经典)态的 ZD−12 宇称改编,它们具有弱重叠(宏观可区分)相干波包的量子叠加结构,具有有趣的量子特性。为此,我们使用一和二量子Dit 约化密度矩阵 (RDM),它是通过从由 cat 态描述的 N 个相同量子Dit 的复合系统中提取一两个粒子/原子,并追踪剩余系统获得的。众所周知(见 [3] 及其参考文献),这些 RDM 的熵提供了有关系统纠缠的信息。我们将绘制与这些 RDM 相关的信息图,并提取有关一和二量子Dit 纠缠的定性信息,以及相应 RDM 的秩,这也提供了有关原始系统纠缠的信息 [7]。我们将应用这些结果来表征 3 级全同原子 Lipkin–Meshkov–Glick 模型中发生的量子相变 (QPT),以补充 [ 8 ] 的结果。具体来说,我们已经看到,一和二量子 DIT RDM 的秩可以被视为检测 QPT 存在的离散序参量前体。本文结构如下。第 2 节回顾了信息图的概念,描述其主要属性,特别是关于秩的属性。第 3 节回顾了 U(D) 自旋相干态的概念及其 ZD−12 宇称适配版本 DCAT。在第 4 节中,我们计算了 2CAT 和 3CAT 的一和二量子 Dit RDM、它们的线性熵和冯诺依曼熵,绘制了它们并构建了相关的信息图。在第 5 节中,我们使用信息图提供有关 Lipkin–Meshkov–Glick (LMG) 模型中 QPT 的定性信息。第 6 节致力于结论。
神经形态计算广义上指使用非冯·诺依曼体系结构来模拟人脑的学习过程。术语“冯·诺依曼体系结构”表示任何存储程序计算机,由于它们共享一条公共总线,因此获取指令和数据操作可能不会同时发生,从而导致“冯·诺依曼瓶颈”,即在单独的内存和计算块之间进行耗能和耗时的数据传输。这种瓶颈限制了计算系统执行数据密集型任务的能力,随着现代机器学习模型的出现,对数据密集型任务的需求只会越来越大。此外,最近的一份报告显示,在“过度参数化模式”下运行的高度复杂的神经网络不会对训练数据中的虚假趋势进行过度拟合,而是比复杂度较低的神经网络对未知数据表现出更好的泛化能力 [ 1 ],这促使模型参数数量自 2015 年以来逐年呈指数增长,训练数据集的大小自 1988 年以来也呈指数增长 [ 2 , 3 ]。具体来说,过去十年见证了从 ResNet-50(> 10 7 个模型参数)到生成式预训练 Transformer 3(GPT-3)(> 10 11 个模型参数)的模型,以及从 ImageNet(~10 6 张图像)到 JFT-3B(> 10 9 幅图像)的数据集。通过克服电子通信、时钟、热管理和电力输送方面的瓶颈 [2],神经形态系统带来了可扩展硬件的希望,可以跟上深度神经网络的指数增长,从而让我们定义了神经形态计算的第一个主要方向:“加速”。那些关注加速的神经形态系统是为了提高现有机器学习模型的速度和能效而构建的,并且往往会产生相对直接的影响。一个常见的例子是深度神经网络前向传递中用于向量矩阵乘法 (VMM) 的交叉阵列。相比之下,我们将神经形态计算的第二个主要目标定义为“实现”,即在非冯·诺依曼架构中实现人类神经生物学功能。第二个目标的影响将比第一个目标更滞后,但代表了下一代机器学习模型的硬件实现,在脉冲神经网络 (SNN)、赫布学习和霍奇金-赫胥黎神经元模型领域取得了进展。
建立了量子相对熵以及冯·诺依曼熵的方向二阶和高阶导数的积分表示,并用于给出基本已知数据处理不等式的简单证明:量子通信信道传输的信息量的 Holevo 界限,以及更一般地,在迹保持正线性映射下量子相对熵的单调性——映射的完全正性不必假设。后一个结果首先由 Müller-Hermes 和 Reeb 基于 Beigi 的工作证明。对于这种单调性的简单应用,我们考虑在量子测量下不增加的任何“散度”,例如冯·诺依曼熵的凹度或各种已知的量子散度。使用了 Hiai、Ohya 和 Tsukada 的优雅论证来表明,具有规定迹距的量子态对上这种“散度”的下界与二元经典态对上相应的下界相同。还讨论了新的积分公式在信息论的一般概率模型中的应用,以及经典 Rényi 散度的相关积分公式。
所考虑的流形由标准形式的 σ 有限冯·诺依曼代数上的忠实正常状态组成。讨论了切平面和近似切平面。假设给出一个相对熵/散度函数。它用于推广连接一个状态到另一个状态的指数弧的概念。指数弧的生成器被证明是唯一的,直到加法常数。在荒木相对熵的情况下,冯·诺依曼代数的每个自伴元素都会生成一个指数弧。组合指数弧的生成器被证明是相加的。从荒木相对熵得出的度量被证明可以重现久保-森度量。后者是线性响应理论中使用的度量。e 和 m 连接描述了一对对偶几何。任何有限数量的线性独立生成器都会确定一个状态子流形,该子流形通过指数弧与给定的参考状态相连。这样的子流形是对偶平面统计流形的量子概括。
摘要 量子纠缠为研究原子核等强相关系统的底层结构提供了独特的视角。在本文中,我们使用量子信息工具分析核壳模型中轻和中等质量的铍、氧、氖和钙同位素的结构。我们对壳模型价空间的不同均分采用不同的纠缠度量,包括单轨道纠缠、互信息和冯诺依曼熵,并确定与核单粒子轨道的能量、角动量和同位旋相关的模式纠缠模式。我们观察到单轨道纠缠与价核子的数量和壳层的能量结构直接相关,而互信息则突显了质子-质子和中子-中子配对的迹象。质子和中子轨道在所有测量中都是弱纠缠的,事实上,在所有可能的价态空间均分中,它们的冯·诺依曼熵最低。相反,具有相反角动量投影的轨道具有相对较大的熵。这一分析为设计更高效的量子算法以应对嘈杂的中尺度量子时代提供了指导。
摘要 — 本次特别会议论文的目标是介绍和讨论不同的突破性技术以及新颖的架构,以及它们如何共同重塑人工智能的未来。我们的目标是全面概述受脑启发计算的最新进展,以及当使用超 CMOS 设备的新兴技术与超越冯诺依曼架构的新型计算范式相结合时,如何实现后者。我们讨论了铁电场效应晶体管 (FeFET)、相变存储器 (PCM) 和电阻式 RAM (ReRAM) 等不同的新兴技术,展示了它们在构建受自然启发的神经形态计算架构方面的良好能力。此外,本特别会议论文还讨论了各种新概念,如内存逻辑 (LIM)、内存处理 (PIM) 和脉冲神经网络 (SNN),以探索超越冯诺依曼计算对加速深度学习的深远影响。最后,将脑启发计算的最新趋势总结为算法、技术和应用驱动的创新,以比较不同的 PIM 架构。索引词 —FeFET、PCM、ReRAM、光子、神经形态、DNN、SNN、内存处理、新兴技术
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'