摘要——这项工作源于对人工智能与数字技术的使用的需要,因此研究了决策中至关重要的过程,并对多个组织进行了评估。研究的过程是物品处理中的保管链。这一过程非常重要,因为它用于司法调查,以证明存在某种关系,从而可以清楚地确定犯罪现场发现的要素之间的关系。对每个相关方进行分析,了解物品的当前保管过程,以及物品从一个办公室转移到另一个办公室的情况。为了了解处理物品的保管链过程,采用了访谈工具,并与负责处理物品的人员进行更直接的接触,获取信息。总之,在完成前面的步骤后,获得了更清晰的流程图,从而确定了单一的流程流程,以及人工智能研究的一部分,提出了可以应用的建议,并针对提出的问题给出了解决方案,其中
关联。在数字经济的背景下,人工智能正在积极引入国家经济生活。根据基于人工智能的程序做出经济决策的具体细节正在成为社会心理学中极为相关的研究领域。该研究的目的是根据人工智能技术获得的建议来确定经济决策的特点。方法。研究分两个阶段进行:访谈和实验。样本。第一阶段的样本为8人(4男4女,年龄18-45岁)。第二阶段,样本包括 289 人(48 名男性和 241 名女性),年龄为 18-25 岁。结果。第一阶段,制定了对基于人工智能的程序的信任和不信任的可能因素,包括在经济决策的背景下。第二阶段进行了一项实验,要求参与者玩股票交易模拟器。该游戏有一个联系经济顾问的选项。实验组有一个人工智能程序作为其顾问,而对照组有一个人类顾问。对参与者的 5652 项经济决策按照风险程度进行了分析。
随着人工智能产品的普及,人类和人工智能越来越多地合作做出决策。为了使这种类型的合作取得成功,人类需要了解人工智能的能力,以便有效地校准他们的信任。在这些合作关系中,以人类可以理解的方式解释决策和预测至关重要,以鼓励信任校准。可解释人工智能领域专注于将可解释性融入人工智能,但旨在使人工智能模型更具可解释性。因此,这项研究通常从以模型为中心的角度而不是以人为中心的角度来处理解释。与此同时,行业研究人员已经制定了指导方针,以帮助界面设计师有效地生成用户友好的解释。然而,这些指导方针通常过于宽泛,无法有效指导行业设计师的日常工作。我们的研究通过两种方法解决了这一差距:一个实证实验,研究人们如何回应解释以及哪些类型的解释对信任校准最有帮助;以及一个教育资源,帮助行业设计师了解用户可能有什么问题,以及使用环境如何影响他们可能使用的解释。我们的实验结果表明,解释并不总是有助于信任校准,实际上可能会损害信任校准,尤其是面对自我能力较低的新手用户时。我们对行业设计师进行的探索性访谈和可用性测试表明,人们渴望一种全面但易于访问的教育资源,以转化我们实验等研究并指导可解释的 AI 产品界面的设计。关键词
致谢:我们感谢战略教授在评估商业模式方面的帮助。我们感谢Sen Chai,Vivianna Fang He,Isabel Fernandez-Mateo和Dan Sands。我们还要感谢AI和战略联盟,德鲁伊24,HBS Idea-X,Mad Conference,Oxford Human-Algorithm互动研讨会,战略科学会议和Sumantra Ghoshal会议的会议。所有作者都同样贡献。
根据“ SFDR授权法规的问和答案(Q&A)(委员会授权法规(EU)2022/1288)”,日期为2022年11月17日,考虑到“ 2023年4月12日的咨询委员会”,欧洲委员会的共同委员会的咨询委员会,授权的第25、26和27点。 (PAI 1除外),所有金融产品的所有直接和间接投资都为投资公司或主权提供资金。
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
