1,2,3 本科生,4 教授 1,2,3,4 电子与电信工程系,3 Padmbhooshan Vasantraodada Patil 理工学院,Budhgoan,Sangli ---------------------------------------------------------------------***---------------------------------------------------------------------------------- 摘要 – 水果和蔬菜脱水是一种很有前途的食品加工技术,可将产品的保质期延长近一年。这是一个增值过程,可以挽救 1/3 的季节性农产品损失。太阳能干燥机可用于不依赖电力进行食品脱水。印度是一个主要依赖农业的国家。水果和蔬菜是人类饮食的重要组成部分,提供微量营养素、维生素、酶和矿物质。大多数水果和蔬菜具有高水分含量和水活度。这使它们容易受到微生物和其他腐败的影响,这是由于酶活性、呼吸和衰老等生化反应引起的。因此,需要采取预防措施来降低水分活度;干燥或脱水就是其中一种方法。干燥是从食物中除去水分以抑制生化过程和微生物生长的过程。干燥可延长产品的保质期,使其在淡季也能供应。干燥可在高温下进行,例如热风干燥或介电加热,也可在低温下进行,例如冷冻干燥,也可在环境温度下进行,例如干燥剂干燥。
引言当前,科学界将大量注意力集中在由可再生资源获得的材料上,特别是由天然聚合物及其衍生物获得的材料,例如壳聚糖、胶原蛋白和海藻酸盐。这对于生物医学中使用的材料尤其如此,因为需要保持生物相容性和抗菌性,例如组织工程的多孔支架或封装活性物质的基质 [1, 2]。因此,一个有前景的领域是研制用于透皮给药 ( TDL ) 的贴剂,当材料贴在患者皮肤上时,能够扩散到血液中 [3]。脱乙酰基几丁质衍生物壳聚糖是一种多糖,广泛用于制造生物医学材料,包括 TDL 材料,其形式为多孔海绵、微粒、水凝胶和薄膜 [4]。由壳聚糖制成的聚合物多孔海绵是一种特别方便的皮肤接触材料。矿物无机酸和一些有机酸被用作溶剂,用于将该聚合物加工成新形式的生物材料。生产多孔壳聚糖海绵的“经典配方”包括将壳聚糖(1-2 wt%)溶解在稀乙酸溶液(1-2 vol%)中,冷冻和冷冻干燥 [5]。尽管此类材料中的酸含量较低,但接触时皮肤可能会产生过敏反应。因此,开发加工这种聚合物的新方法并寻找新的溶解介质变得极为重要。
摘要:在当前的研究中,壳聚糖(CS)和聚乙烯醇(PVA)使用的水凝胶是使用没有有毒交联剂的Freeze-Thaw方法生产的。磁性纳米颗粒(MNP)和槲皮素(QC)在合成水凝胶并使用冻干剂冷冻干燥后,将其添加到系统中。准备好的样品用于体外药物释放研究。QC,称为天然多酚,是支持其抗氧化作用的癌症治疗的有前途的候选人。然而,含有Fe3O4纳米颗粒的水凝胶具有高孔隙度和封装效率,使其成为药物加载和受控释放的方便载体。QC被封装在合成的CS-PVA-MNP中。使用扫描电子显微镜(SEM)可视化制备水凝胶的形态变化。使用傅立叶变换红外光谱(FTIR)测定合成样品的分子结构,而通过热重分析(TGA)评估其热稳定性。QC在包括Fe 3 O 4 MNP的水凝胶中的封装效率(EE)和药物加载效率(DLE)分别确定为93.40%和65.58%。在pH 5和pH 7.4处的QC的体外释放曲线证明了水凝胶的有效性。这些结果表明CS-PVA-MNPS-QC是预期递送的方便载体,并揭示了QC作为药物与癌细胞的潜力。
摘要:Passiflora edulis f. flavicarpa(黄色西番莲)是一种高价值热带作物,既可作为水果,也可作为营养品销售。随着美国水果产量的上升,必须研究盐度在半干旱气候下对作物的影响。我们评估了灌溉水盐度、叶龄和干燥方法对叶片抗氧化能力 (LAC) 和植物遗传反应的影响。植物在室外蒸渗仪槽中生长三年,水的电导率分别为 3.0、6.0 和 12.0 dS m − 1。Na 和 Cl 均随着盐度的增加而显著增加;3.0 和 6.0 dS m − 1 下的叶片生物量相似,但在 12.0 dS m − 1 下显著降低。盐度对 LAC 没有影响,但新叶的 LAC 高于老叶。低温烘干 (LTO) 和冷冻干燥 (FD) 的叶子具有相同的 LAC。对十二种转运蛋白基因(其中六个参与 Na + 转运,六个参与 Cl − 转运)的分析表明,根部的表达量高于叶子中的表达量,这表明根部在离子转运和控制叶子盐浓度方面起着关键作用。百香果对盐度的中等耐受性和其高叶子抗氧化能力使其成为加利福尼亚州的潜在新水果作物,也是营养保健品市场的黄酮类化合物的丰富来源。低温烘干是冷冻干燥的潜在替代方案,可用于准备百香果叶子的氧自由基吸收能力 (ORAC) 分析。
本工作采用定向冷冻干燥技术制备具有定向多孔结构的三维高导电纤维素纳米纤维 (CNF)/Ti 3 C 2 T x MXene 气凝胶 (CTA),然后通过热退火 CTA、随后的真空辅助浸渍和固化方法制备热退火 CTA (TCTA)/环氧树脂纳米复合材料。结果表明,TCTA/环氧树脂纳米复合材料具有三维高导电网络,超低渗透阈值为 0.20 vol% Ti 3 C 2 T x 。当 Ti3C2Tx 的体积分数为 1.38vol% 时,TCTA/环氧纳米复合材料的电导率(σ)、电磁干扰屏蔽效果(EMI SE)和 SE 除以厚度(SE/d)值分别达到 1672 S m -1、74 dB 和 37 dB mm -1,与之前报道的相同填料含量的聚合物纳米复合材料相比几乎是最高值。此外,与不含 Ti3C2Tx 的样品相比,TCTA/环氧纳米复合材料的储能模量和耐热指数分别提高到 9792.5 MPa 和 310.7℃,提高了 62% 和 6.9℃,表现出优异的力学性能和热稳定性。所制备的轻质、易于加工、可成型的 TCTA/环氧纳米复合材料具有优异的 EMI SE 值、优异的机械性能和热稳定性,极大地拓宽了 MXene 基聚合物复合材料在 EMI 屏蔽领域的应用。
Nishanth M 摘要 自人类航天早期以来,太空食品技术取得了重大进步。过去,人们通常将食物冷冻干燥或辐照以延长其保质期并减少其体积,但这些方法会导致食物的味道和质地不佳。如今,太空食品通常包装在可复水的袋子中,可以在飞行中加热。然而,目前的太空食品技术仍然面临着诸多挑战,例如需要延长保质期、缺乏新鲜食材以及需要满足宇航员在长期任务期间的营养需求。未来,垂直农业和 3D 食品打印等食品生产技术的进步可能有助于改善太空食品的口感和营养价值,并使在航天器上种植新鲜农产品成为可能。此外,研究太空食物的心理影响对于保持宇航员的士气和生产力至关重要。本综述重点介绍太空食品及其技术的起源和历史、目前正在使用的方法和方法以及未来的进步和机遇。 关键词:太空食品;食品生产;食品包装;生命支持系统;冷冻干燥 引言 宇航员在太空失重状态下会吃一种特殊的食物,即“太空食品”。适当的饮食对于长期太空旅行中的社会心理至关重要,而摄入正确的营养素可以维持这种心理。膳食营养对宇航员的生命健康至关重要。太空食品应具有小巧、轻便、便于携带、能够抵御辐射、振动和低压等环境变量的有害影响等特点。太空食品在成分、储存、营养成分和食用方式方面与普通食品不同。太空环境会带来许多生理变化,如骨质流失、肌肉质量下降、免疫功能下降、肠道转运时间减慢、肠道通透性降低等,这些变化可能会影响食物的吸收。为宇航员提供足够的太空飞行食物和营养,是保证他们健康的关键。然而,在太空旅行过程中,航天员的膳食摄入可能经常不足,导致其营养状况明显下降,并引发或加剧失重环境下对人体健康的生理变化。因此,航天食品需要不断改进。太空食品的开发应遵循两个目标:一是满足航天员生存所需的生理需求;二是满足航天员在长期、艰苦的太空任务中对心理健康和享受的需求。科学技术的进步大大增加了太空食物的数量和质量。太空饮食和地球饮食之间唯一的解剖学区别就是这些。今天,宇航员可以吃一周的完全不同的美食。美国宇航员在太空中沉迷于自己的快餐文化,他们吃汉堡包、沙拉、香肠馅饼、甜点,甚至感恩节吃火鸡。国际空间站上的俄罗斯机组人员可以享用一份有 300 多种选择的菜单,每天四餐,每餐都有各种选择,包括干肉、西兰花和奶酪、冻梭子鱼猪肉、杏仁烤土豆等。日本料理在日本占主导地位,包括寿司、面条、纳豆饭、水果、咖喱牛排、海鲜、炖猪肉等。如今,宇航员可以选择的中国菜系多达 100 多种,包括鱼香肉丝、宫保鸡丁、莲子粥、蒸牛肉、粽子、八宝饭、凉茶等等。食品加工和保鲜技术的进步,促成了如此丰富多样的饮食。(Jiang et al 2019)[14] 。
与生物材料应用相关的研究涵盖了组织工程和再生医学 (TERM) 领域的很大一部分,本研究课题致力于生物材料用途的多种可能性。本研究课题共收到 10 篇手稿,35 位作者参与其中,最终选出 6 篇。其中 4 篇为原创研究文章,2 篇为评论文章。生物材料最有趣的方面之一是我们能够研究所选材料的整个生命周期,可能的第一步是建模和材料科学。通常,当我们尝试开发一种新材料时,可以使用各种光谱方法(例如傅里叶变换红外光谱 (FTIR)、X 射线光电子能谱 (XPS))和显微镜方法(例如数字显微镜、扫描电子显微镜 (SEM) 或荧光显微镜)来评估表面和成分。这些方法需要根据起始材料和制造类型进行选择,这也是将生物材料划分为适当类别的另一个方面,因为金属基材料通常不适合 FTIR、荧光显微镜或通常不适合肿胀或酶分解相关的表征,但它们的途径或消除可以在生物系统中跟踪,例如,使用磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT)。制造方法主要可分为以下几种:相分离(沉淀)、快速成型、超临界流体技术、致孔剂浸出、静电纺丝、3D 打印、冷冻干燥、离心铸造、模板和微图案化( Collins and Birkinshaw,2013;Tóth 等,2023)。然而,一般来说,对生物材料的主要要求是改善组织再生,并能够创造一个支持细胞附着、增殖、迁移和分化的环境(Juriga 等人,2022 年;Zhang 等人)。使用时间最长的生物材料之一是金属,因此可以肯定地说,这种材料经受住了时间的考验,然而,我们仍然可以看到金属生物材料的制造和处理方面的发展方向。在制造方面,传统方法是铸造金属,但金属的 3D 打印正在迅速引起人们的兴趣,然而,由于 3D 打印医疗器械的监管尚不明确,因此医疗器械中仍然应用铸造材料(Burnard
冻干(也称为冷冻干燥)是一种通过水或其他溶剂的升华和解吸将液体转化为固体的过程。该过程包括三个高度相互关联的阶段:冷冻、初级干燥(升华)和二次干燥(解吸)。冻干通常用于稳定在液体或冷冻形式下不稳定的活性药物成分 (API) 和配方。由于冻干不需要加热,因此它是热敏感 API 和生物制剂(如蛋白质和肽)的理想干燥方法。当使用冻干制造肠外药物产品时,所得粉末被密封在小瓶、药筒或注射器内。在给药前,将冻干粉重新配制或与液体稀释剂混合,以形成用于注射的均匀溶液或悬浮液。冻干粉的高表面积允许在床边快速重新配制(即补液)和注射,这对于紧急产品特别有用。这些产品高度稳定,保质期通常超过两年。冻干也可用于生产中间粉末,然后进一步加工成最终剂型。例如,可将具有高残留溶剂含量和热敏感性的粉末冻干,以在进行进一步加工之前除去溶剂。冻干也可用于生产稳定、可流动的粉末,以进行研磨或直接压片。在需要非常小的填充量的粉末填充中,将粉末溶解在液体中并冻干有助于控制重量,因为控制液体填充的体积更容易。冻干最重要的特性或许是它与无菌操作的兼容性,使其成为从开发开始的肠外给药的可靠选择。 2013 年至 2015 年,获批的注射和输注药物中,有一半是冻干产品,而 1990 年至 1981 年,冻干产品仅占 10%。这其中包括价值数十亿美元的小分子药物 Alimta®,以及 Lupron Depot®、Keytruda® 和 Herceptin® 等重磅生物制剂。随着复杂配方和水稳定性较差的生物制剂变得越来越普遍,冻干药物产品的增长预计只会持续下去。
摘要简介:天然生物聚合物用于医疗保健中的各种目的,例如组织工程,药物输送和伤口愈合。细菌纤维素和壳聚糖在本研究中首选,因为它们的非毒性,可生物降解,生物相容性和非炎性特性。该研究报告了磁细菌纤维素 - 壳聚糖(BC-CS-FE 3 O 4)纳米复合材料的发展,该纳米复合材料可用作组织工程的生物相容性支架。氧化铁纳米颗粒被包括在该复合材料中,以提供超顺磁特性,这些特性在各种应用中有用,包括成骨分化,磁成像,药物输送和用于癌症治疗的热诱导。方法:通过将Fe 3 O 4浸入细菌纤维素 - 壳聚糖支架的混合物中,然后将其冷冻干燥来制备磁性纳米复合材料。使用FE-SEM和FTIR技术表征所得的纳米复合材料。通过实验评估了支架的肿胀比和机械强度。使用PBS在37°C下使用PBS 8周评估支架的生物降解性。使用人脂肪衍生的间充质干细胞(ADSC)和艾丽莎白红染色研究了纳米复合材料的细胞毒性和成骨分化。单向方差分析带有Tukey的多重比较测试进行统计分析。 结果:FTIR光谱证明了纳米颗粒官能团之间的键形成。 fe-Sem图像显示了原纤维网络的完整性。单向方差分析带有Tukey的多重比较测试进行统计分析。结果:FTIR光谱证明了纳米颗粒官能团之间的键形成。fe-Sem图像显示了原纤维网络的完整性。磁性纳米复合材料具有最高的肿胀比(2445%±23.34)和拉伸强度(5.08 MPa)。8周后,BC,BC-CS和BC-CS-FE 3 O 4支架的生物降解比分别为0.75%±0.35、2.5%±0.1和9.5%±0.7。与其他支架相比,磁性纳米复合材料的毒性低(P <0.0001)和更高的成骨潜力。结论:基于其高拉伸强度,低吸水性,合适的降解性,低细胞毒性和高能力诱导干细胞增加钙沉积的能力,磁性BC-CS-FE 3 O 4纳米复合材料型支架可以作为替代性分化的二型候选者。
1。药物产物的名称嗜血杆菌流感型B型结合疫苗i.p.(冻干)。2。QUALITATIVE AND QUANTITATIVE COMPOSITION Haemophilus influenzae Type b Conjugate Vaccine (Sii HibP RO ) is a freeze-dried vaccine of purified polyribosyl ribitol phosphate capsular polysaccharide (PRP) of Hib, covalently bound to tetanus toxoid (carrier protein).HIB多糖是由H流感型B型菌株的囊多糖制备的,激活后与破伤风毒素偶联。破伤风毒素是通过提取,硫酸铵纯化和福尔马林从破塔尼氏梭菌培养物来制备的。疫苗符合WHO和I.P.的要求在WHO中概述的方法测试时,TRS 897(2000)和i.p.每剂量为0.5 ml,含有:纯化的囊囊多糖(PRP)共轭10 mcg破伤风毒素(载体蛋白)19至33 mcg稀释剂:用稀释剂重新植入了流感型流感的稀释剂。3。药物形式嗜血杆菌流感型B型结合疫苗i.p.是一种纯化的HIB的纯化多氧0个蛋白磷酸磷酸磷酸胶质胶状多糖(PRP)的冷冻干燥疫苗,共价结合到破伤风毒素(载体蛋白)。4。临床细节4.1治疗指示SII HIBP RO(B型流感型B型结合物疫苗i.p.)用于针对所有6周至5岁儿童的B型流感型流感嗜血杆菌的主动免疫。sii hibp ro(嗜血杆菌型B型结合疫苗i.p.)不能预防其他类型的流感烟草或其他生物引起的脑膜炎。4.2剂量和给药剂量SII HIBP RO(B型流感B型偶联疫苗i.p.)指示为6周至60个月大的儿童预防由流感嗜血杆菌引起的侵袭性疾病。在6周至6个月大的婴儿中,免疫剂量是在大约4周间隔内给出0.5 mL的三个单独注射。以前7至11个月大的未接种婴儿应接受两次单独的注射,相距约2个月。以前未接种疫苗的12至14个月大的儿童应接受一次注射。所有接种疫苗的儿童应在12-18个月大的时候接受单一助推器剂量,但不少于先前剂量后2个月。以前未接种疫苗的儿童15至60个月大