该研究的目的是通过对基台适应程度的体外研究来评估可移动部分义齿中数字印象的精度。肯尼迪III类模型,在43和47元素之间具有假肢空间,分别在米西奥 - 胶囊和扣带区域中具有壁ni。在亚组浓度和conm中进行了常规印象,而数字扫描是在DIGC和DIGM中进行的。使用石膏和树脂型号上的蜡技术制造了简化的钴 - 铬合金框架。通过用冷凝硅硅硅酮打动壁ni,定性评估穿孔,并在横截面后立体显微镜下定量测量霉菌厚度来评估结构的适应程度。常规适应性在实验组中更为普遍。conce显示出较高的平均基台适应程度,而conm的平均值较低。研究因素,印象技术和基台座椅的类型在统计学上没有显着意义,并且变量之间没有相互作用。咬合和扣带式基台测量点没有统计学上的显着差异。数字扫描在基台适应方面产生了更好的结果,基台座椅和金属结构之间的平均间隙较小,因此在临床上可以接受。基座座和印象技术的类型对基台适应没有统计学上的显着影响。印象技术并不代表影响不同测量点上咬合和扣带扣基台适应的因素。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
准确的信息处理在技术和自然界中都是至关重要的。为了实现它,任何信息处理系统都需要初始资源供应远离热平衡。在这里,我们建立了可以通过给定数量的非平衡资源来实现准确性的基本限制。该限制适用于任意信息处理任务和任意信息处理系统受量子力学定律的影响。它很容易计算,并且用熵数量表示,我们将其命名为反向熵,与所考虑的信息处理任务的时间逆转相关。对于所有确定性的经典计算及其所有量子延伸都可以达到极限。作为一种应用程序,我们建立了非quilibrium和准确性之间的最佳权衡,用于存储,传输,克隆和擦除信息的基本任务。我们的结果设定了接近最终效率限制的新设备设计的目标,并提供了一个框架,以证明量子设备的热力学优势比其经典配料。
摘要该项目提出了三种用于为EEG Net数据集创建神经网络模型的方法 - 使用CNN,CNN+LSTM和变异自动编码器(VAE)。研究评估并比较了两种方法在分类运动图像中的性能。结果表明,CNN+LSTM方法在准确性方面优于VAE方法。但是,VAE方法具有保留脑电图信号的关键特征的优势,同时降低其尺寸。两种方法都有其各自的优势和局限性,可以根据应用程序的特定要求使用。除了上述两种方法外,我们还为该数据集实施了随机森林,以对ML和DL模型的准确性成就进行比较分析。索引术语:机器学习(ML),深度学习(DL),VAE(变异自动编码器),长期短期存储网络(LSTM),脑电图(EEG)(EEG)
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
2019 年 6 月 23 日至 2020 年 3 月 22 日,在 Wah Cantt 第三医院接受脑膜炎检查。材料和方法:通过非概率目的抽样,共纳入 173 名患者。我们的研究纳入了年龄在 2 至 70 岁之间、性别不限且根据临床表现疑似患有脑膜炎的患者。本研究排除了禁用增强 MRI 和腰椎穿刺的患者、确诊为脑膜炎的患者和不同意接受检查的患者。所有患者均以 0.2 毫升/秒的速度接受静脉注射造影剂钆。钆后 T1W 和钆后 FLAIR 图像由顾问放射科医生获取和评估。将发现记录在规定的表格上。对患者进行随访并从实验室收集腰椎穿刺结果。结果:平均年龄为 26.4±23.5 岁,范围从 2 岁至 70 岁。 173 名患者中,98 名(56.6%)为男性,75 名(43.4%)为女性。临床表现如下:喂养不良、易怒和嗜睡 86 人(49.7%),头痛 137 人(79.2%),恶心/呕吐 125 人(72.3%),颈部僵硬 89 人(51.4%),意识水平改变 132 人(76.3%),癫痫发作 78 人(45.1%)和局部神经功能障碍 45 人(26%)。以腰椎穿刺金标准为诊断标准,增强 MRI FLAIR 诊断脑膜炎的灵敏度为 91%,特异性为 85%,PPV 为 87.6%,NPV 为 89.4%,诊断准确率为 88.4%。以腰椎穿刺金标准为标准,增强 MRI T1W 在脑膜炎诊断中的诊断准确率显示敏感性 60.2%、特异性 77.5%、PPV 75.6%、NPV 62.6% 和诊断准确率 68.2%。结论:与增强 T1W 序列相比,增强 FLAIR 序列在检测脑膜增强方面具有更高的敏感性和特异性。因此,对于所有怀疑患有脑膜炎的患者,应将增强 FLAIR 序列作为常规序列添加到 MRI 脑部方案中。
在电子游戏中,调整战斗难度可能是一项艰巨的任务。当我们谈论多个 AI 代理同时向玩家射击的场景时,情况尤其如此。在这种情况下,可能会出现意外的伤害峰值,这会使难度平衡变得更加困难。本章将展示如何在不损害玩家体验的情况下避免它们,同时仍为设计师提供许多平衡功能。有几种不同的方法来解决这个问题。我们可以调整 AI 武器造成的伤害;我们可以添加一些启发式方法,根据诸如玩家上次被击中后经过的时间或同时瞄准玩家的 AI 数量等因素动态修改伤害值;或者我们可以让 AI 不那么准确,每隔几次射击才真正击中玩家一次。后者将是本章的重点:利用 AI 的准确性来更好地控制玩家每帧可以受到的伤害量。这是一个复杂而有趣的话题,主要有两个部分:
