实现强大而实时的3D感知是自动驾驶汽车的基础。虽然大多数现有的3D感知方法优先考虑检测准确性,但十个忽略了关键方面,例如计算效率,板载芯片部署友好性,对传感器安装偏差的韧性以及对各种VE-HILE类型的适应性。为了应对这些挑战,我们提出了nvautonet:一种专业的鸟类视图(BEV)感知网络 - 针对自动化车辆的明确量身定制。nvautonet将同步的相机图像作为输入,并预测3D信号(例如障碍物,自由空间和停车位)。NVAUTONET架构(图像和Bev Back-bones)的核心依赖于有效的卷积网络,该网络使用Tensorrt优化了高性能。我们的图像到BEV转换采用简单的线性层和BEV查找表,从而确保了快速推理速度。Nvautonet在广泛的专有数据集中受过培训,在NVIDIA DRIVE ORIN SOC上以每秒53帧的速度运行,始终达到升高的感知精度。值得注意的是,Nvautonet表现出对不同汽车模型产生的偏差偏差的韧性。此外,Nvautonet在适应各种车辆类型方面表现出色,这是通过廉价模型的微调程序来促进的,可以加快兼容性调整。
b')lqdoo \\ wkdqnvwrduwl \ xe2 \ x80 \ xb9fldolq whooljhqfhqfhdqglpdjhdqdo \ \ \ \ \ vlvwrrovduhhhrovduhhhhhqjwwrrovduhhqjlqjwkdwkdwzloohqdepr ymorecly inters inters inters inters inters suste suste suste生物学做出更准确的诊断。这些众多发展的主要后果之一是将癌症病理分裂为vhulhvriuduhvshfl \ xe2 \ x80 \ xb9fglvhdvhvhvzklfkxqghuslqghuslqvwkhghghghghyhorsphqwriwdujhdujhgwkhudslhv7klvshuvssurdol] phglflqhsurpswvxvwruh \ xef \ xac \ x81hfwsduwlfxoduo \\ rqkrzrzwrfrqgxfwfwfolqlfdowuldowuldovov'
生成模型的最新进展引起了人们对统计差异作为模型比较手段的研究兴趣。常用的评估方法,例如 Fréchet 初始距离 (FID),与样本的感知质量有很好的相关性,并且对模式下降很敏感。然而,这些指标无法区分不同的失败案例,因为它们只产生一维分数。我们提出了一种新的分布精度和召回率定义,将差异分解为两个独立的维度。所提出的概念直观,保留了理想的属性,并自然而然地产生了一种可用于评估生成模型的有效算法。我们将这个概念与总变异以及最近的评估指标(如初始分数和 FID)联系起来。为了证明所提出方法的实用性,我们对生成对抗网络和变分自动编码器的几种变体进行了实证研究。在大量实验中,我们表明所提出的指标能够将生成样本的质量与目标分布的覆盖范围区分开来。
所有专家都说,当前的脊柱或硬膜外麻醉程序是在脊柱地标触及椎间盘上。两个指出,可以使用常规超声波,但这不是很常见,因为需要专业技能。两位专家说,该设备具有创新性,因为它可以通过在超声图像上叠加的椎骨图像来轻松找到椎间盘空间。也有人指出,使用该设备需要最少的训练,并且它是手持式设备,因此很容易在床边使用。一位专家说,该设备可以在产妇护理中帮助超声引导的脊柱或硬膜外块,因为它比较大的机器更容易使用,并且在给予脊柱块时遇到困难时。四位专家认为,除标准护理外,还可以使用该设备。一个人认为它可以随着时间的流逝而取代当前的标准护理。
摘要该项目提出了三种用于为EEG Net数据集创建神经网络模型的方法 - 使用CNN,CNN+LSTM和变异自动编码器(VAE)。研究评估并比较了两种方法在分类运动图像中的性能。结果表明,CNN+LSTM方法在准确性方面优于VAE方法。但是,VAE方法具有保留脑电图信号的关键特征的优势,同时降低其尺寸。两种方法都有其各自的优势和局限性,可以根据应用程序的特定要求使用。除了上述两种方法外,我们还为该数据集实施了随机森林,以对ML和DL模型的准确性成就进行比较分析。索引术语:机器学习(ML),深度学习(DL),VAE(变异自动编码器),长期短期存储网络(LSTM),脑电图(EEG)(EEG)
2019 年 6 月 23 日至 2020 年 3 月 22 日,在 Wah Cantt 第三医院接受脑膜炎检查。材料和方法:通过非概率目的抽样,共纳入 173 名患者。我们的研究纳入了年龄在 2 至 70 岁之间、性别不限且根据临床表现疑似患有脑膜炎的患者。本研究排除了禁用增强 MRI 和腰椎穿刺的患者、确诊为脑膜炎的患者和不同意接受检查的患者。所有患者均以 0.2 毫升/秒的速度接受静脉注射造影剂钆。钆后 T1W 和钆后 FLAIR 图像由顾问放射科医生获取和评估。将发现记录在规定的表格上。对患者进行随访并从实验室收集腰椎穿刺结果。结果:平均年龄为 26.4±23.5 岁,范围从 2 岁至 70 岁。 173 名患者中,98 名(56.6%)为男性,75 名(43.4%)为女性。临床表现如下:喂养不良、易怒和嗜睡 86 人(49.7%),头痛 137 人(79.2%),恶心/呕吐 125 人(72.3%),颈部僵硬 89 人(51.4%),意识水平改变 132 人(76.3%),癫痫发作 78 人(45.1%)和局部神经功能障碍 45 人(26%)。以腰椎穿刺金标准为诊断标准,增强 MRI FLAIR 诊断脑膜炎的灵敏度为 91%,特异性为 85%,PPV 为 87.6%,NPV 为 89.4%,诊断准确率为 88.4%。以腰椎穿刺金标准为标准,增强 MRI T1W 在脑膜炎诊断中的诊断准确率显示敏感性 60.2%、特异性 77.5%、PPV 75.6%、NPV 62.6% 和诊断准确率 68.2%。结论:与增强 T1W 序列相比,增强 FLAIR 序列在检测脑膜增强方面具有更高的敏感性和特异性。因此,对于所有怀疑患有脑膜炎的患者,应将增强 FLAIR 序列作为常规序列添加到 MRI 脑部方案中。
在电子游戏中,调整战斗难度可能是一项艰巨的任务。当我们谈论多个 AI 代理同时向玩家射击的场景时,情况尤其如此。在这种情况下,可能会出现意外的伤害峰值,这会使难度平衡变得更加困难。本章将展示如何在不损害玩家体验的情况下避免它们,同时仍为设计师提供许多平衡功能。有几种不同的方法来解决这个问题。我们可以调整 AI 武器造成的伤害;我们可以添加一些启发式方法,根据诸如玩家上次被击中后经过的时间或同时瞄准玩家的 AI 数量等因素动态修改伤害值;或者我们可以让 AI 不那么准确,每隔几次射击才真正击中玩家一次。后者将是本章的重点:利用 AI 的准确性来更好地控制玩家每帧可以受到的伤害量。这是一个复杂而有趣的话题,主要有两个部分:
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
从时间分辨的医学图像中精确重建右心几何形状和运动可增强基于图像可视化的诊断工具以及通过计算方法进行的心脏血液动力学分析。由于右心形态和运动的特殊性,常用的分割和/或重建技术仅采用短轴电影 MRI,在右心相关区域(如心室底部和流出道)缺乏准确性。此外,重建过程非常耗时,并且在生成计算域的情况下需要大量的人工干预。本文提出了一种从时间分辨 MRI 中精确高效地重建右心几何形状和运动的新方法。具体而言,所提出的方法利用表面变形来合并来自多系列电影 MRI(如短/长轴和 2/3/4 腔采集)的信息并重建重要的心脏特征。它还通过利用合适的图像配准技术自动提供完整的心脏收缩和放松运动。该方法既适用于健康病例,也适用于病理(法洛四联症)病例,并且比标准程序产生更准确的结果。所提出的方法还用于为计算流体动力学提供重要输入。相应的数值结果证明了我们的方法在计算临床相关血液动力学量方面的可靠性。© 2023 Elsevier BV 保留所有权利。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。