结果:相对于模拟治疗或单独使用辐射处理的细胞,在与辐射和ATR抑制剂联合处理后的72小时后,所有细胞系的细胞外释放均在所有细胞系中增加。HMGB1释放在很大程度上与质膜完整性的丧失相关,但并非严格相关,并通过添加caspase抑制剂而被抑制。然而,尽管caspase抑制了caspase,但在该细胞系caspase抑制诱导的PMLKL中,一条细胞系显示了HMGB1的释放,这是坏死性的标记。ATP分泌发生在共同治疗后的48小时内,显然与质膜完整性的丧失无关。添加pan-caspase抑制作用进一步增加了ATP分泌。在辐照后24-72小时时,钙网蛋白的表面呈递增加,但通过ATR或caspase抑制进一步增加。
Gasdermin(GSDM)蛋白家族包括GSDMA/B/C/D,GSDME(DFNA5)和DFNB59(PEJVAKIN,PJVK)(1)。这些关键分子在刺穿细胞膜,释放免疫因子和诱导细胞死亡方面起着关键作用(1,2)。GSDM穿孔是由caspase和Granzymes(GZMS)介导的,它通过浮游性信号通路触发,并在针对病原体和癌症的免疫防御中持有关键的显性(2)。除DFNB59外,所有保守的蛋白质都包含N末端打孔域和C末端自抑制域(3)。在正常条件下,这些蛋白质通过域相互作用聚集,抑制GSDM的穿孔功能(3)。通过致病或破坏性信号,caspase或GZMS裂解GSDM激活后,将其分为N末端和C末端段(4)。这些片段然后寡聚,在细胞膜中形成毛孔,从而释放了炎性分子和细胞凋亡(4,5)。凋亡(6,7)。它突然表现出来,与其他程序性细胞死亡机制相比,引起了炎症反应的增强(8)。在2015年,发现了caspase-1将GSDMD分割为N末端和C末端结构域,从而揭示了凋亡过程(9)。GSDMD的自由N末端结构域在细胞膜中形成通道,
在克鲁兹锥虫感染期间,巨噬细胞吞噬寄生虫,并通过肿瘤细胞增多症去除凋亡细胞。巨噬细胞1(M1)会产生促弹性细胞因子和NO和Figts感染,而M2巨噬细胞是表达精氨酸酶1并在组织修复中起作用的允许性宿主细胞。M1和M2表型的调节可能会诱导或损害巨噬细胞介导的免疫力,以控制寄生虫的控制或持续性。在这里,我们重点介绍了巨噬细胞激活在对克鲁齐的早期免疫反应中的关键作用,该反应可防止急性感染期间的寄生虫,心脏寄生虫和死亡率升级。我们将讨论巨噬细胞激活和失活的机制,例如T细胞因子和胚细胞增多症,以及如何改善巨噬细胞介导的免疫力以防止寄生虫持久性,影响,炎症,以及Chagasic心肌疗法的发展。潜在的疫苗或治疗必须增强早期的T细胞巨噬细胞串扰和寄生虫控制,以限制寄生虫引起的心脏中炎症的致病结果。
糖尿病性心肌病(DCM)是糖尿病的常见并发症之一,作为特定的心肌病,在心脏的结构和功能上具有异常。随着糖尿病患病率的增加,DCM在全球范围内具有高发病率和死亡率。最近的研究发现,作为一种程序性细胞死亡,伴有炎症反应,加剧了DCM的生长和起源。这些研究为探索DCM的潜在处理提供了理论基础。Therefore, this review aims to summarise the possible mechanisms by which pyroptosis promotes the development of DCM as well as the relevant studies targeting pyroptosis for the possible treatment of DCM, focusing on the molecular mechanisms of NLRP3 in fl ammasome-mediated pyroptosis, different cellular pyroptosis pathways associated with DCM, the effects of pyroptosis occurring in different cells on DCM和针对NLRP3炎症/热胞菌的相关药物用于治疗DCM。本评论可能为开发DCM的治疗剂提供了新的视角和基础。
抑制促凋亡信号死亡受体下调i。死亡受体(例如FAS和TRAIL受体)启动外部凋亡途径。II。 抑制死亡受体表达或功能可以预防凋亡。 b。抑制caspase激活i。 caspase是凋亡过程的关键执行者。 II。 抑制caspase激活,无论是直接或通过上游信号传导,都会阻止凋亡。 抗凋亡途径的激活a。 生长因子信号i。 生长因子,例如IGF-1和EGF,激活了PI3K/AKT和MAPK/ERK(例如PI3K/AKT)的促生物途径。 II。 这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。 b。 NF-κB途径i。 NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。 II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。抑制死亡受体表达或功能可以预防凋亡。b。抑制caspase激活i。 caspase是凋亡过程的关键执行者。II。 抑制caspase激活,无论是直接或通过上游信号传导,都会阻止凋亡。 抗凋亡途径的激活a。 生长因子信号i。 生长因子,例如IGF-1和EGF,激活了PI3K/AKT和MAPK/ERK(例如PI3K/AKT)的促生物途径。 II。 这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。 b。 NF-κB途径i。 NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。 II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。抑制caspase激活,无论是直接或通过上游信号传导,都会阻止凋亡。抗凋亡途径的激活a。生长因子信号i。生长因子,例如IGF-1和EGF,激活了PI3K/AKT和MAPK/ERK(例如PI3K/AKT)的促生物途径。II。 这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。 b。 NF-κB途径i。 NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。 II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。b。 NF-κB途径i。NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。NF-κB途径的激活可以抑制各种刺激的凋亡。c。 Bcl-2家族蛋白i。Bcl-2家族包括促凋亡和抗凋亡成员。II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。C.治疗应用
1四川医学科学院和四川省人民医院,中国电子科学技术学院医学院,中国成都,2个个性化药物治疗四川省医学院,医学院,中国医学院,医学院3个个性化药物疗法四川医学科学学院和四川省人民医院,中国电子科学与技术大学医学院,成都,中国,成都5神经科学系,成都锡希迪学校,成济族尚格学校,中国成都,6 6号药学院,6次中国医学,临床医学,临床医学,临时性医学,四川医学学院和四川省人民医院,成都,四川,中国
铁凋亡是一种以氧化应激和铁依赖性方式调节细胞死亡的新兴形式,主要是由活性氧(ROS)过量产生引起的。操纵铁铁作用已被认为是抑制肝肿瘤生长的有前途的治疗方法。然而,肝癌抗铁毒性的抗性发展在癌症治疗中构成了重大挑战。翻译后修饰(PTMS)是关键的酶促催化反应,可以共价调节蛋白质构象,稳定性和细胞活性。此外,PTM在各种生物学过程中扮演关键作用,并在包括铁质吞噬作用的各种生物学过程中发挥作用。重要的是,与铁凋亡有关的关键PTM调节剂已被确定为癌症治疗的潜在靶标。近年来,已经对两种蛋白质SLC7A11,SLC7A11,GPX4的PTMS功能进行了广泛研究。本综述将总结PTM在肝细胞相关蛋白中在肝细胞癌(HCC)治疗中的作用。
1 墨西哥特拉尔潘萨尔瓦多祖比兰医学科学与营养研究所 Guillermo Soberon Acevedo 生物化学部,2 墨西哥国立自治大学生物科学研究生。科皮尔科大学,科约阿坎,墨西哥,3 基因组学实验室,国家癌症研究所,特拉尔潘,墨西哥,4 造血和白血病实验室,细胞分化和癌症研究中心,萨拉戈萨高等研究学院,墨西哥国立自治大学,伊斯塔帕拉帕,墨西哥,5 CNC - 神经科学和细胞生物学中心,CIBB - 创新生物医学和生物技术中心,科英布拉大学,科英布拉,葡萄牙,6 功能基因组学实验室,生物医学部,FES-IZTACALA,墨西哥国立自治大学,特拉尔内潘特拉,墨西哥
癌症中的凋亡允许肿瘤细胞生存并繁殖,并导致肿瘤进展和耐药性。相反,Parthanatos是由聚(ADP-核糖)聚合酶1(PARP1)过度激活,诱导凋亡诱导因子(AIF)易位的caspase非代谢崩溃的,以及综合DNA损伤。几种癌症模型涉及parthanatos。脱氧噬菌体毒素(DPT)通过过量的ROS产生,PARP1上调和AIF核易位诱导神经胶质瘤细胞中的parthanatos。像急性髓样白血病(AML)一样,大麻素衍生物Win-55触发了Parthanatos,并且诸如Olaparib等PARP抑制剂可以逆转效果。制定涉及高级癌症治疗策略的癌症治疗策略取决于凋亡与帕氏症之间的相互作用。然而,这种基于凋亡的癌症疗法倾向于发展抗药性,因此迫切需要研究诸如parthanatos之类的替代途径,帕氏症(Parthanatos)可能并不总是触发凋亡。在克服凋亡耐药性时,有证据表明,将凋亡诱导剂(例如BH3 Mimetics)与PARP抑制剂结合起来可以协同增强细胞死亡。氧化应激调节剂可促进骨par骨和凋亡路径的执行并允许治疗。在这篇综述中,讨论了与癌症治疗潜力有关的凋亡和parthanatos在分子水平上进行彻底比较。关键字:parthanatos,凋亡,癌症,细胞死亡机制,PARP1,胱天蛋白酶,耐药性我们纳入了最新发现,以证明帕氏症不仅可以通过帕氏症和凋亡的结合使用来管理治疗耐药性,并增强癌症治疗,而且还可以对长期循环的癌症干细胞治疗多种形式的转移性癌症来使用免疫力和骨沉积。