在安全多方计算(MPC)上的大多数现有工作忽略了现代通信网络的关键特质,即任何两个节点之间的通信路径数量有限,其中许多节点甚至可能被损坏。在信息理论环境中,问题变得尤为严重,在这种情况下,缺乏可信赖的设置(以及他们启用的加密原始图)使得稀疏网络上的沟通更具挑战性。Garay和Ostrovsky [eurocrypt'08]几乎每个人的MPC(AE-MPC)的作品在此类不完整的网络上引入了MPC的“最能力的安全性”属性,在此不一定会将一些诚实的政党从计算中排除。在这项工作中,我们提供了几乎每个地方的安全性的普遍组合定义,这使我们能够自动,准确地捕获AE-MPC的保证(以及AE-Communication(AE-Communication),这是Canetti的通用合并性(UC)框架中类似的“最佳安全性”安全性的“安全通信”版本)。我们的结果提供了对这个重要但不足的问题的首次基于模拟的治疗,以及第一个基于仿真的AE-MPC证明。为了实现这一目标,我们指出并证明了一般组成定理,这使得在协议的混合体被几乎每个地方的组件替换时获得了AE安全的水平或“质量”。
b'figure 1。类似药物样的小分子与MIR21结合。我们基于常见的2--((5-(5-(piperazin-1-基)吡啶-2-基)氨基)吡啶[3,4-D]吡啶蛋白-4(3H) - 一种结构,并分析了它们与PRE-MIR-21结合使用通用NMR ASSAIN 1,2。在NM中部范围内,称为45(a)和52(b)的两种化合物具有很强的结合活性。通过移动单个氮的位置产生的化合物(表1)显示出明显降低的亲和力(5-10倍差)(C)。1 H NMR配体检测到的滴定,以评估候选化合物的结合:将浓度的RNA添加到含有100 m小分子的溶液中,该溶液中含有50 mM pH 6.5的氘化TRI的缓冲液中的小分子,以及250 mm NACL,NACL,50 mm KCL,KCL和250 mm KCL和2 mmmmmmmmmgcl 2。随着增加量的小分子与RNA结合,1小时线宽增加,而NMR峰高相应降低。相对于内标(DSA),从峰高的降低降低来计算结合小分子的分数。曲线饱和为1的值表示存在具有子-UM亲和力的主要单位位点;相比之下,无关的RNA结合化合物Palbociclib以低得多的值饱和,并显示了几乎线性滴定曲线,这表明了非特异性结合(有关所有测试化合物的结构,请参见表1)。可以通过将数据点拟合到结合等温线来计算近似结合常数。化合物52的数据拟合对应于近似K d = 200 nm,而化合物45和49(表1)均具有K d = 600 nm。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
利用数据实现安全:机器学习/人工智能实现及时航空安全 Nikunj C. Oza 博士、Chad Stephens 美国宇航局全系统安全项目 现代喷气式客机每飞行一次记录近 1GB 的原始数据,几乎是不到十年前投入使用的喷气式客机记录数据的两倍。鉴于这一宝贵的数据宝库,数据分析是一项非常重要的能力,它可以将这些数据转化为知识,从而帮助理解和实现安全操作。数据分析的实践涉及应用人工智能 (AI) 和机器学习 (ML) 等方法来获取见解并识别数据中的有意义关系。人工智能是一门专注于在基于计算机的代理中开发模拟人类智能的研究领域。ML 是人工智能的一个分支,涉及开发预测或决策算法,这些算法不是明确编程来预测或决策的,而是从代表过去预测或决策的数据中学习的。您可能体验过 ML 支持的功能,例如 Netflix 或 Amazon 中的自定义推荐。由于机器学习算法具有从过去的操作中学习的能力,因此虚拟助手(例如 Apple 的 Siri 或 Amazon 的 Alexa)以及部分或完全自动驾驶汽车成为可能。
我们考虑在数字量子计算机上模拟量子系统。我们表明,通过同时利用目标汉密尔顿的交换性,相互作用的稀疏以及初始状态的先验知识,可以通过利用量子模拟的性能来提高量子模拟的性能。我们实现了涵盖各种物理系统的一类相互作用的电子(包括平面波 - 巴西电子结构和费米 - 哈伯德模型)的动力化。我们通过在η-电子歧管中嵌套术语的嵌套换向器来估计模拟误差。我们开发了多种技术来界定一般费米子操作员的转移幅度和期望,这可能是独立的。我们表明,它可以使用N 5/3η2 / 3 + N 4/3η2 / 3 N O(1)< / div>
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2021 年 6 月 29 日发布。;https://doi.org/10.1101/2021.06.28.450169 doi:bioRxiv 预印本
联合新闻稿 新加坡,2021 年 6 月 8 日 NTU、NP 和 NHCS 科学家发明的新型人工智能工具可以加快心血管疾病的诊断 新加坡南洋理工大学 (NTU Singapore)、新加坡义安理工学院 (NP) 和新加坡国家心脏中心 (NHCS) 的一组研究人员发明了一种可以加快心血管疾病诊断的工具。在人工智能 (AI) 的推动下,他们的创新利用心电图 (ECG) 来诊断冠状动脉疾病、心肌梗死和充血性心力衰竭,准确率超过 98.5%。联合开发诊断工具非常及时,因为新加坡过去三年来因心血管疾病导致的死亡人数有所增加。据新加坡心脏基金会称,2019 年新加坡所有死亡人数中有 29.3%(几乎占新加坡死亡人数的三分之一)是心脏病或中风造成的。科学家们希望他们的创新能够支持临床环境中心血管疾病的诊断,特别是在医生进行初步心电图检查时,最终加快治疗进程。研究人员使用一种名为 Gabor-卷积神经网络 (Gabor-CNN) 的人工智能机器学习算法设计了诊断工具,该算法模仿人脑的结构和功能,使计算机能够像人类一样从过去的经验中学习。他们使用该算法,通过输入反映心血管疾病的心电图信号示例来训练他们的工具识别患者心电图中的模式。这项研究的共同作者、NHCS 心脏病学系高级顾问临床副教授 Tan Ru San 表示:“我们对一小组初步研究对象进行的研究表明,在使用常规心电图对一些常见心血管疾病进行分类的准确性方面取得了令人鼓舞的结果。虽然确认特定疾病仍需要额外的测试,但我们的诊断工具将
不动点。借鉴 Berinde [3, 4]、Wardowski [23] 和 Samet 等人 [19] 的工作,我们熟悉了偏度量空间框架中的几乎 α - F 收缩和几乎 α - F 弱收缩,然后建立了单个不动点存在的充分假设。此外,受到分数阶非线性微分方程在众多科学和工程领域中具有重要意义的启发,我们应用我们的结果建立了满足周期性边界条件的分数阶微分方程的解。此外,受到聚光太阳能大量发电是最适合以合理方式缓解气候变化以及减少化石燃料消耗的技术之一的现实启发,我们解决了将太阳能转化为电能时出现的边界值问题。
像传统的古典货币计划一样,一种量子货币计划可以是Wiesner的计划[WIE83]或[MS10]等硬币计划等账单计划。在账单方案中,每个货币状态都以唯一的序列号标记,而量子硬币是同一状态的确切副本。因此,账单容易与隐私相关攻击。量子货币计划的另一个重要特征是它可以是私人的或公共的。在私人计划中,只有银行才能使用一些秘密信息来验证货币状态。公共货币计划的动机是废除去银行进行验证的必要性。通常,这是通过发出经典公共密钥来完成的,该公共密钥用于验证算法中。尽管朝这个方向进行了几次尝试,但仍没有根据标准假设的公共量子资金。但是,还有另一种公开验证的方法。考虑以下情况:您前往国外并从ATM中撤回一些现金。后来,您执行了一项交易,其中您从不受信任的来源收到钱。您将如何验证这笔钱的真实性?您可以将其与您从银行的ATM中撤回的钱进行比较,并接受它们是否相同。我们称此方法为基于比较的验证。请注意,您不需要任何其他信息,例如有关这笔钱的公共密钥或其他安全功能。但是,您确实要求货币状态是硬币而不是账单,即它们是彼此无法区分的副本。在这项工作中,我们将基于比较的验证方法扩展到量子设置,并使用它将私人量子硬币方案提升为几乎公共量子硬币方案。通过将其与钱包中的新硬币进行比较来完成收到硬币的验证。因此,在此计划中,至少需要一种有效的货币状态才能验证所收到的货币。从技术上讲,两个量子货币状态之间的比较是通过对对称子空间进行投影测量来完成的。
Andreas Bluhm IDᄊ,Matthias Christiandlᄊ,Fulvio Gesmundoᄊ,Frederik Ravn Clausenᄊ,Laura Man手法