硅IGBT的开发一直以更高的功率效率和更高的当前处理能力来设计优化和降低电源转换器系统的成本。在过去的三十年中,通过引入沟槽几何学[1],野外停机(FS)技术[2]和注射增强(IE)效应来取得重大进展。但是,在州绩效,切换频率和长期可靠性方面的进一步改善变得难以实现。这是因为动态雪崩(DA)在限制高电流密度操作能力方面起着关键因素[4-7]。要打破常规IGBT的基本限制,并保持与宽带差距(WBG)功率设备的竞争力,必须以可靠的方式实施创新的硅技术,以实现自由运营和显着降低功率损失,同时与WBG替代品相比保持硅的成本竞争力。这是因为无DA的操作可以降低门电阻,从而降低开关损耗并提高可靠性。沟槽簇的IGBT(TCIGBT)是唯一到目前为止已实验证明的无DA的解决方案[7-11]。其自晶状功能和PMOS操作可有效地管理沟槽门下的峰值电场分布。此外,即使将NPT-TCIGBT与FS-IGBT进行比较,固有的晶闸管操作也会提供更低的状态损失[10,11]。因此,TCIGBT提供了一种高度有希望的解决方案,可以超越当前IGBT技术的限制。
量子 Souriau 李群热力学:具有新见解和新结果的全面综述 1969 年,Jean-Marie Souriau 在几何力学框架内引入了“李群热力学”,为统计力学提供了一种新方法。F. Barbaresco 及其合作者已经证明了 Souriau 模型在信息几何和几何深度学习等各个领域的适用性。本文全面回顾了 Souriau 的辛模型向量子信息理论的扩展。在 F. Barbaresco 和 F. Guy-Balmaz 的工作基础上,他们强调了量子信息几何和李群热力学之间的强烈相似性,本综述探讨了李代数的酉表示的作用以及 Fisher 度量和 Bogoliubov-Kubo-Mori 度量之间的等价性。除了综述之外,本文还介绍了通过整合量子热力学的现代发展进一步扩展经典 Souriau 框架的新结果。具体来说,这项工作将“量子李群热力学”与共伴生轨道的几何学联系起来,利用基于凯勒结构的混合量子态几何框架。该框架包含辛形式、近复结构和黎曼度量,全面刻画了混合量子态的空间,为量子热力学的底层几何结构提供了更深入的见解。
1。B。J. Kim,T。Nasir和J.-Y. choi,“石墨烯在低温下为将来的设备应用直接生长”,J。Korean Ceram。 SOC 55 [3] 203–223(2018)。 2。 Y。 M. Song等。 ,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。 3。 S。 E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。 今天9 [6] 20–25(2006)。 4。 E。 POP,“纳米级设备中的能量耗散和运输”,Nano Res。 3 [3] 147–169(2010)。 5。 H。 F. Hamann等。 ,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。 6。 J。 Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。 热。 eng。 149 192–212(2019)。 7。 S。 v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。 9 [5] 1850–1855(2009)。 8。 C。 Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。 9。 W。 Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。J. Kim,T。Nasir和J.-Y.choi,“石墨烯在低温下为将来的设备应用直接生长”,J。Korean Ceram。SOC 55 [3] 203–223(2018)。2。Y。M. Song等。 ,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。 3。 S。 E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。 今天9 [6] 20–25(2006)。 4。 E。 POP,“纳米级设备中的能量耗散和运输”,Nano Res。 3 [3] 147–169(2010)。 5。 H。 F. Hamann等。 ,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。 6。 J。 Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。 热。 eng。 149 192–212(2019)。 7。 S。 v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。 9 [5] 1850–1855(2009)。 8。 C。 Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。 9。 W。 Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。M. Song等。,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。3。S。E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。今天9 [6] 20–25(2006)。4。E。POP,“纳米级设备中的能量耗散和运输”,Nano Res。3 [3] 147–169(2010)。5。H。F. Hamann等。,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。6。J。Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。热。eng。149 192–212(2019)。7。S。v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。9 [5] 1850–1855(2009)。8。C。Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。9。W。Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。Cai等。,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。10 [5] 1645–1651(2010)。10。A。A. Balandin等。 ,“单层石墨烯的高热电导率”,Nano Lett。 8 [3] 902–907(2008)。 11。 C。 W. Chang等。 ,“同位素对硝酸硼纳米管的热导率的影响”,物理。 修订版A. Balandin等。,“单层石墨烯的高热电导率”,Nano Lett。8 [3] 902–907(2008)。11。C。W. Chang等。,“同位素对硝酸硼纳米管的热导率的影响”,物理。修订版
本文研究了使用计算思维和编程使用Scratch和Python Turtle教授几何概念。计算思维是一种教育实践,致力于通过编程和算法模式来发展学生解决问题,抽象思维,模式识别和逻辑推理的技能。这一学习领域得到了各种举措的支持,例如“所有CS”和ISTE的计算思维学生标准,以及使用机器人技术,3D打印,微处理器和直觉编程语言等工具(Angeli,2020年)。计算思维通常与以算法方式解决问题有关,即定义问题并将其分解为较小的可解决的逐步部分,就像计算机代码的结构和目的一样(Barr,V。和C. C. Stephenson,2011年)。几项研究认为,编程可以激励学生学习数学并提高解决问题的能力(Barak,M。和M. Assal,2016年; Sinclair,N。和M. Patterson,2018年)。对于学生来说,重要的是要理解和掌握几何学的概念,包括角度,线条,形状,翻译和转换。但是,传统的教学几何学方法可能很难让当前的学生理解。通过使用计算思维和编程,学生可以更深入地了解几何概念。Scratch和Python Turtle是两种编程语言,通常用于教授计算思维和编程(Iskrenovic-Momcilovic,O。(2020); Rahim,1997)。
1。数学(40个标记): - 数字系统,多项式,两个变量中的线性方程,二次方程,算术进展,坐标几何学,三角测定,三角形,概率,三角形,三角形,四边形,四边形,四边形,圈子,圆,统计,统计。2。科学(60分):: a)物理学(20分): - 光反射和倒置,电力,电流的磁效应。人类的眼睛和丰富多彩的世界,能源的来源。b)化学(20分): - 原子和分子,原子结构,反应和方程,酸,碱和盐,金属和非金属,碳及其化合物,元素的定期分类。c)生物学(20分): - 植物和人类的有性繁殖(生物如何繁殖),控制与协调,生命过程,遗传和进化,我们的环境。3。英语(20分): - 时,语音,词汇和错误校正,介词,标签问题,文章和确定词以及语音的部分。4。心理能力测试和推理(30分):-1。逻辑推理: - 陈述和结论,参数和假设,三段论,数字序列和模式; 2。数学推理: - 数字和操作,代数表达式和方程,几何和月经,数据分析和解释; 3。非语言推理: - 视觉难题和图案,镜像图像和反射,立方体和骰子,纸张折叠和切割; 4。言语推理: - 类比和关系,单词形成和模式,编码和解码,分类和分类; 5。批判性思维: - 确定偏见和假设,评估论点和证据,得出推论和得出结论,解决道德或道德困境。
2006–2022:科罗拉多州立大学普韦布洛,普韦布洛,美国公司,美国数学与物理学系副教授; also: OER Coordinator [Fall 2020 - Spring 2022], Director, Center for Teaching and Learning [Spring 2018 - Fall 2020], and Data Analyst, Center for Teaching and Learning [2016 - Fall 2020] Courses: Intermediate Algebra, College Algebra, Statistics, Precalculus, Calculus I and II, Real Analysis, Complex Analysis, Number Theory and Cryptology, Vectors and Matrices, Linear Algebra, Math探索,数学编程,算法和数据,结构,像希腊语一样思考[希腊历史,哲学和希腊化的哲学和数学研讨会,年龄],更高的几何形状,拓扑,拓扑概论,简短的课程“ cyberdefense证书”课程,“基本网络设计”,基本网络设计,Cryptology:Cryptology:Basics to Blogsics to Blockains to Blockchains Service:Checulty Service:Coptulty Service:Acculty Service:Acculty Servicty:2013-15,2013-15;参议院副主席,2014/15;教师手册委员会联席主席,2013/14年;信息技术委员会成员兼主席,2013 - 16年;有组织的部门研究研讨会;荣誉计划监督委员会;网络安全和区块链教育指导委员会; CSU-PUEBLO AAUP章副总裁监督:几项学生研究项目和独立研究,包括分形几何学,计算线性代数,生物信息学和密码学
摘要:作为清洁,可再生和稳定的能量来源的地热能量的兴趣正在固定,这是努力减少碳排放的一部分,并远离化石燃料。温泉发生在可能具有剥削潜力的活性热液系统的位置中,本文评估了Ulu Slim Hot-Spring的潜力,这是马来西亚半岛上报告的大约60个地下室热弹簧中最温暖的。可用的数据和类似推断,即,热弹力的表面温度和流量,适用的地热梯度的范围,地球热计的源温度指示,水力头部差异,与表面形象相关的水力差异,指示性和暂定性断层以及分裂尺寸,几何学和分布,以及概念上的水平序列,并补充概念性的水平序列,并补充概要 - 逐步逐步逐步逐步逐步逐步逐步逐步逐步逐步促成 - 促成良好的逐步逐步促成 - 促进型 - 促进量表 - 促进量表 - 概要 - 促进式逐步逐步促成 - 促进型 - 地下参数,例如控制可提取热量的断裂系统的源深度和几何形状以及特性。结果,该模型模拟了由喷油器井支持的假设井的热量和电力潜力(从电源植物中重新注入凉爽的废物流)。模型结果表明,由于狭窄的断裂/断层走廊的流体循环而导致的过早冷却是一个重大风险。总体而言,研究结果表明,使用像Ulu Slim这样的温泉地热热进行发电可能并不那么简单。也许寻找有吸引力的地热位置应在热弹簧位置的指导下,而是在基础设施和电力需求附近的驱动下。
摘要 - 基于损耗的几何点云压缩(G-PCC)不可避免地会损害点云的几何信息,这在诸如分类等任务等任务中的重新结构和/或误导决策中降低了经验质量(QOE)。为了解决它,这项工作提出了GRNET,以恢复G-PCC压缩大规模点云的几何形状。通过分析原始和G-PCC压缩点云的内容特性,我们将G-PCC失真归因于两个关键因素:点消失和点位移。点云上的可见障碍通常由个体因素或由两个因素施加的超级因素主导,这取决于原始点云的密度。为此,我们采用了两个不同的模型进行坐标重建,称为坐标扩展并分别攻击点消失和位移点。INADDITION,4- byteauxilaryDensitySinformation在BITSTREAM中发出信号,以帮助选择扩展,协调坐标,坐标,或它们的组合。在被送入坐标重建模块中之前,G-PCC压缩点云首次是由用于多尺度信息融合的特征分析模块处理的,其中基于K NN的变压器在每个尺度上都利用了基于K的变压器,以适应邻域几何学的邻域几何学动力学来有效恢复。以MPEG标准化委员会建议的常见测试条件显着提高了G-PCC锚点,并且在各种点云(例如,实心,密度和稀疏的样品)上的最先进方法均超过了最先进的方法。同时,与现有基于学习的方法相比,GRNET运行速度相当快,并且使用较小的模型,从而使其对行业从业人员有吸引力。
声学:59 航空学:32 美国史学:45 解剖学:2 建筑学:12、38、41、43、87-93 艺术:25、29、38、41 天文学:26、36、39、44、46、47、50、57 拍卖目录:6-11、29 参考书目:3、6-11、16、18、20、21、48、55、61、84、85、96、100 传记:18、57 植物学:29、54、56 桥梁:45、78 微积分:12、23、28、35、62、94 运河:12 癌症: 67 心脏病学: 15, 58, 97, 98 目录: 2, 3, 6-11, 20, 25, 29, 48, 55, 96 化学: 13, 15, 31, 33, 42, 67, 69, 74 色彩理论: 71 计算机: 41 晶体学: 40 Dibner 项目: 15, 33, 34, 42, 44, 64, 79 词典: 38 染色和漂白: 13, 41, 42, 69, 74 早期印刷书籍(1601 年之前):22, 26, 31, 34, 56, 65-67, 71, 72, 74, 79 经济学: 41 电力与磁性:1、42、44、59、60、64、81、86 胚胎学:2 En Français dans le Texte 项目:37 工程学:12、24、41、45、70、78、79、86、95 昆虫学:54 加里森 - 莫顿项目:15、58 宝石:61 地质学:37、86 几何学:19、34、59 玻璃:40 格罗利尔俱乐部,100 本医学名人书籍:66 历史:61
摘要:在温室蔬菜生产中,还原性土壤消毒(RSD)有效地减轻了土壤传播的疾病,但其对土壤有机碳(SOC)动态的影响尚未得到充分检查。这项研究研究了深度RSD处理后土壤聚集体和有机碳保留机制的分布。温室实验,包括对照(CK),小麦稻草(RSD)和用化肥(RSD + NP)处理的小麦稻草,表明在RSD + NP治疗中,在RSD下,在RSD下形成了宏观凝聚力(> 2 mm和0.25-2 mm)的增强。粉质粘土颗粒转化为宏观和微聚集。傅里叶红外光谱谱图强调了SOC中含有碳的功能基团的增强,脂肪族碳在宏观聚集体中积聚,粉粘土中的芳香族碳。实验室培养实验采用了不同的C/N比(带小麦稻草的RSD1,带有奇异果分支的RSD2)强调了低C/N比有机物对粗大宏观宏观含量和平均重量图,几何量,几何学,几乎平均直径和silt silt silt silt silt silt silt clay coby c/n比的有益影响。低C/N比增强了大骨料的SOC保留率,而高比例稳定微聚集碳。这项研究强调了连续的温室种植系统中的严重降解,并强调了RSD的双重好处 - 预防疾病和改善的SOC保留率。实施RSD需要仔细考虑有机材料选择,即其C/N比率,这是一种关键因素的影响。