摘要。目的。在开发脑机接口 (BCI) 时,使用短记录间隔对脑电图 (EEG) 信号进行高精度分类一直是一个难题。本文提出了一种新颖的 EEG 记录特征提取方法来解决这个问题。方法。所提出的方法基于大脑以动态方式运作的概念,并利用动态功能连接图。首先将 EEG 数据分割成功能网络维持其连接的间隔。然后定位每个识别出的段的功能连接网络,并构建图形,这些图形将用作特征。为了利用生成的图的动态特性,采用长短期记忆 (LSTM) 分类器进行分类。主要结果。从与运动执行和想象任务相关的不同持续时间的刺激后 EEG 数据中提取的特征用于测试分类器的性能。结果显示平均准确率为 85。 32% 的准确率仅使用从刺激后 500 毫秒数据中提取的特征。意义。我们的结果首次证明,使用所提出的特征提取方法,仅使用几百毫秒的数据就可以对 EEG 记录中的运动任务进行分类。这个持续时间比以前报告的要短得多。这些结果对于提高 BCI 的有效性和速度具有重要意义,特别是对于辅助技术中使用的 BCI。
预测未来对于像智人这样的生物来说至关重要,他们生活在一个动态且不断变化的世界中。先前的研究已经证实,有意识的刺激可以导致无意识的预测。在这里,我们检查掩蔽刺激是否也能引起这样的预测。我们使用有障碍物和无障碍物的掩蔽运动来检查掩蔽刺激的预测。在六个实验中,使用连续闪光抑制 (CFS) 掩盖了一个移动物体。物体消失几百毫秒后,有意识的探测器出现在与掩蔽刺激一致或不一致的位置。在实验 1-3 中,运动是线性的,反应时间 (RT) 表明基于运动方向和速度的预测。在实验 4 中,被遮蔽的移动物体与障碍物相撞,然后消失。在这种情况下,预测应该反映偏转,而且反应时间确实揭示了对偏转路线的预测。在实验 5 和 6 中,我们介绍了一种在连续闪光抑制 (CFS) 期间使用眼动追踪的创新方法,并以眼球运动的形式报告了被遮蔽刺激引起的预测的生理证据。因此,我们得出结论,人类可以使用动态遮蔽刺激来产生对未来的主动预测,并使用这些预测来指导行为。我们还根据当前关于遮蔽呈现、潜意识感知和意识测量方法之间关系的科学讨论,讨论了这些发现的可能解释。
几十年来。 [1] 目前商业化锂离子电池的能量密度受到层状结构正极材料(如 LiCoO 2 和 LiNixMnyCo1−x−yO2)的限制,由于材料晶格中 Li+ 主位点有限,只能提供小于 220 mAh g−1 的比容量。 [2] 此外,锂离子电池市场的快速扩张导致钴和镍价格飙升(2022 年钴金属价格高达 90 美元/千克)。因此,迫切需要探索高能量密度、低成本的无钴、无镍正极材料。转化型材料通常由 Fe、Cu、O 和 S 等价格较便宜且环境友好的元素组成,其容量比插层型电极材料高得多。 [3] 在各种转化化合物中,过渡金属氟化物(MF x )既提供> 2.0 V 的高氧化还原电位(由于金属氟化物键的高离子性),又提供大容量,因为每单位分子式允许多个电子转移,从而实现相当高的理论能量密度。[4] 转化正极面临的一个主要挑战是循环稳定性。优化的 Fe 基氟化物如 FeF 2 、FeF 3 、FeOF 和 Fe 0.9 Co 0.1 OF 可以稳定地充电/放电几百次循环。[5] 然而,Fe 基正极的能量密度仍然不够高。氟化铜(CuF 2 )比 Fe 基氟化物提供了更高的比能量密度(1874 Wh kg −1 ),因为它对 Li/Li + 的理论电位高达 3.55 V,理论容量为 528 mAh g −1 。[6]
摘要:我们对聚酰亚胺纤维上的CO 2激光诱导的电导率进行了激光参数研究。发现诱导的电导率主要发生在扫描线的中心,而不是在整个线宽度上均匀地发生。Microraman检查表明,电导率主要是由于激光照射线中心诱导的石墨烯结构的多层(4-5)的结果。线中心的石墨烯形态和纳米级纤维结构一起以薄壁多孔结构的形式出现。具有每单位长度和激光功率的能量剂量,这种电导率的表面修饰与激光脉冲频率无关,但取决于平均激光功率。可以通过在高功率水平上对激光束进行一次激光束的扫描来实现高电导率。为了达到高电导率,以低功率使用激光,但要以较慢的扫描速度或进行多次扫描来补偿它是有效或有效的。当10毫米扫描长度上的电阻从几百欧姆降低到30欧姆,当单位长度的能量剂量从0.16 j/mm增加到1.0 j/mm,即从5.0 w增加到5.0 w到24 w,在24 W上增加了3.44×10 w/cm 2 2 s cm 2 2 k. 16.54 w/cm的相应功率,一次通行证扫描。相比之下,以超过22.5 mm/s的速度以低于5 W的功率导致非导电开路。
近年来,许多探测器被发射到月球、行星、小行星和彗星进行科学观测。许多探测器都携带了光探测和测距 (LIDAR) 系统,其测量范围从几十公里到几百公里 [1, 2, 3, 4, 5]。我们已经为远程 LIDAR 接收器开发了定制 IC“LIDARX”,它将安装在火星卫星探测器 (MMX) [6] 上。另一方面,如果航天器降落在月球或行星上进行科学观测或资源勘探,航天器的着陆点通常是未开发地点,这些地点可能并不总是着陆的理想地点。在这些未开发地点进行精确着陆需要三维 (3D) 图像,以便在着陆前立即测量地形、避障和检测相对于地面的姿态。美国宇航局的自主着陆和避险技术 (ALHAT) 项目正在开发一种系统,用于快速自主地识别未来行星着陆装置 GN&C 的安全着陆点 [7, 8, 9]。在 ALHAT 中,Flash LIDAR [10, 11, 12, 13] 被定位为障碍物检测的重要传感器。作为一个典型的例子,2016 年发射的 OSIRIS-REx 使用 Flash LIDAR 进行制导、导航和控制 [14, 15, 16, 17]。Flash LIDAR 是一种以类似于闪光摄影的方式捕获 3D 图像的传感器,通过将激光脉冲散射并照射到相机的视场上,相机会
量子密码学 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的突出候选技术 [2]。尤其是量子密钥分发 (QKD),其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是由于光纤链路的透射率呈指数衰减。通常,有两种解决方案可以克服这一限制:使用量子中继器 [4-10] 或使用自由空间和卫星链路 [11-17]。目前,基于陆地光纤的量子通信系统的覆盖范围仅限于几百公里 [18],而我们似乎即将建立全球量子通信网络,即量子互联网 [19, 20]。因此,最近的研究对星载 QKD 和空间量子通信产生了浓厚兴趣 [17],旨在了解自由空间高空平台站 (HAPS) 系统和卫星链路如何帮助解决当前的距离限制,同时保证量子安全。人们已经采取了重要措施,特别是在单向空间量子通信的限制和安全性方面 [21-25],其中
来自太空的量子密钥 BMBF 资助的 QUBE 联盟由 LMU 领导,旨在开发和测试使用纳米卫星进行全球安全通信的硬件。通过利用量子态生成密钥,可以实现通过量子加密的安全通信。与由于信号损失而限制在几百公里内的光纤网络相比,卫星可以促进未来多个地面站和卫星之间密钥的全球交换。太空微型高科技 为了有效实现这一目标,光学和量子通信领域的领先研究小组与通信、卫星和航空航天技术领域的创新公司和机构密切合作。该联盟成功开发了生成量子密钥的技术和必要的紧凑组件,以适应一颗非常小的卫星,即立方体卫星。整个模块总重 3.53 公斤,尺寸为 10 厘米 x 10 厘米 x 30 厘米,不大于鞋盒。跨学科研究团队合作 位于维尔茨堡的独立研究机构 Zentrum für Telematik (ZfT) 负责开发和实现相应的小型卫星。“一项特殊的技术挑战是将所需的卫星功能小型化,尤其是高精度指向地面站,以建立稳定的光学链路。在这里,纳米卫星实现了前所未有的姿态精度,”ZfT 总裁 Klaus Schilling 教授强调道。对于 CubeSat 和地面站之间的信息交换,该研究所
第二次世界大战以来最大的空战和海战 这场冲突于 1982 年 4 月 2 日爆发,爆发国为英国和当时由军政府统治的阿根廷。该事件的根源在于两国之间关于福克兰群岛主权的一场非常古老的争端。福克兰群岛的面积相当于北爱尔兰的面积,位于阿根廷大西洋海岸几百公里外。西班牙人在 16 世纪先后发现了该岛,随后英国航海家约翰·戴维斯 (John Davis) 于 1592 年也发现了该岛。从 18 世纪开始,该岛成为西班牙(当时独立的阿根廷)与英国之间领土争端的根源。联合起来。1982年,阿根廷执政的军政府面临日益严重的经济和社会困难,决定采取军事行动,以转移民众对国内问题的注意力。阿根廷武装部队入侵了该群岛,当时该群岛的居民不足 3,000 人,以及同样在英国主权之下的南乔治亚岛和南桑威奇群岛。这是罗萨里奥行动。英国政府随即决定使用武力捍卫英国对这些岛屿的主权。一周之内,皇家海军就集结了一支航空母舰战斗群和一支两栖攻击部队。总共有 28,000 名英国士兵在 25 天内跨越了英国与福克兰群岛之间近 13,000 公里的距离。阿根廷武装部队拥有 10,000 名地面士兵和 35 架战斗机
除批量模式之外的燃烧系统,反向下吸式炉(商业名称为 Oorja)运行。在过去四年中,在 JGI 火灾与燃烧研究中心,已经构思、实现和商业化了几种生物质清洁燃烧装置。这些装置构成了连续燃烧系统,主要依赖于喷射器诱导通风,需要更高的空气供应装置功率。在开发和商业化的品种中,有 (a) 具有倾斜炉排和空气供应装置的装置,适合自行进料不同密度的颗粒和类似燃料,(b) 包括用于稻壳等燃料的移动炉排的装置,(c) 水平配置的基于喷射器的空气供应和 (d) 垂直布置的喷射器配置,具有单盘或多盘装置。应用包括每小时一到几百公斤的功率水平,用户定义的可变热功率需求、短或长的燃烧区、有限的系统高度、广泛变化的密度、燃料形状和大小,例如木柴、废木、腰果壳废料、玉米芯和其他农业残留物,所有这些都采用清洁燃烧模式。虽然从燃烧科学的角度来看,期望满足这些对清洁燃烧气体燃料(如天然气或液化石油气)的需求已经足够具有挑战性,但真正最具挑战性的问题是设计一种家用烹饪解决方案(1 千克/小时水平),其生物质范围如上所述,因为
纤维素是多糖之一,是植物细胞壁的主要成分。在各种类型的纤维素中,纤维直径为4至100 nm,长度为几μM,长宽比为100或更多的纤维素的纤维素称为纤维素纳米纤维(CNF),并吸引了作为领先的生物量材料的注意力。除了CNF的轻重量和高强度外,它们还具有其他出色的功能,包括高气势屏障特性,吸附和透明度以及作为植物来源的材料,生产和处置的环境影响很小。将来,预计将使用汽车组件,电子材料,包装材料和其他应用。纳米纤维素材料的表面可以用硫酸盐基团和羧基等表面官能团修饰,以添加各种功能。在水中,这些表面官能团的离子部分充当带电组,从而提高了水分性。通常,电导滴定方法已用于对这些表面充电组的定量分析。尽管这是一种通用技术,但它存在许多问题,包括需要大量的样品材料(几百毫克)样品材料,但测量时间很长,需要视觉确认,并且结果是根据分析师而差异的。因此,不取决于单个分析师的技能来解决这些问题的简单方法。该实验是在新月大学的Jun Araki教授的合作中进行的。本文使用Shimadzu Ultraviolet-Visible Light(UV-VIS)分光光度计介绍了甲苯胺蓝O(TBO)吸附方法对表面官能团进行定量分析的示例。