继续前面的内容 Jesus Pascual 也在队列中。“这真是一场斗争,”Pascual 说,他是一名看门人,估计他每月要花几百美元为自己、妻子和他们 11 至 19 岁的五个孩子购买食品杂货。同样的场景在全国各地上演,食品银行工作人员预测今年夏天将很艰难,需求仍远远超过需求。食品价格飙升之前,各州政府结束了 COVID-19 灾难声明,该声明暂时允许增加 SNAP 下的福利,SNAP 是覆盖约 4000 万美国人的联邦食品券计划。“看起来情况不会在一夜之间好转,”全国食品银行网络 Feeding America 的总裁兼首席运营官 Katie Fitzgerald 说。“需求确实使供应挑战变得复杂。”尽管去年年底需求有所减少,但慈善食品分发量仍远高于冠状病毒大流行之前的捐赠量。Feeding America 官员表示,第二季度的数据要到 8 月才能准备好,但他们从全国各地的食品银行听说需求正在飙升。圣玛丽发言人杰里·布朗说,凤凰城食品银行的主要配送中心在 6 月的第三周向 4,271 个家庭分发了食品包裹,比去年同期的 2,396 个家庭增加了 78%。
摘要 - 直径为10厘米的自治微型航空车(MAV),由于其板载智能所启用了广泛的适用性,因此是一种新兴技术。但是,这些平台在运行的机载电源信封中受到很大的限制,即少于几百兆瓦,可以将车载处理器固定到简单的微控制器单元(MCUS)的类别中。这些MCU缺乏高级安全功能,从而通向广泛的网络安全漏洞,从相同频率的代理商之间的通信到恶意代码的机上执行。这项工作提出了一种开源系统 - 芯片(SOC)设计,该设计集成了由8核32位并行可编程加速器加速的64位Linux功能的主机处理器。异质系统体系结构与基于信任的开源Opentitan根源相结合。为了展示我们的设计,我们提出了一个用例,在该用例中,Opentitan在MAV登上的SOC上发现安全漏洞,并驾驶其独家GPIO开始启动LED闪烁的例程。此过程体现了两个棕榈大小的MAV之间的非常规的视觉通信:接收器MAV分类发件人的LED状态(ON或OFF),并且在平行加速器上运行的板载卷积神经网络;然后,它在1.3 s中重建一个高级消息,比当前的商业解决方案快2.3×。
摘要 - Kyber Kem,NIST选择的公共密钥加密和密钥封装机制(KEMS)的PQC标准已通过NIST PQC标准化过程进行了多种侧道攻击。但是,所有针对Kyber Kem划分程序的攻击要么需要了解密文的知识,要么需要控制密文的值以进行密钥恢复。但是,在盲目的环境中没有已知的攻击,攻击者无法访问密文。虽然盲目的侧通道攻击以对称的密钥加密方案而闻名,但我们不知道Kyber Kem的这种攻击。在本文中,我们提出对Kyber Kem的第一次盲侧通道攻击来填补这一空白。我们针对解密过程中点乘法操作的泄漏,以执行实用的盲侧通道攻击,从而实现完整的密钥恢复。,我们使用来自PQM4库的Kyber Kem的参考实现的功率侧渠道对攻击进行了实际验证,该kem在ARM Cortex-M4 MicroController上实现。我们的实验清楚地表明,在有适当准确的锤击重量(HW)分类器的情况下,我们提议的攻击仅在几百到几千个痕迹中恢复了全部钥匙的可行性。索引术语 - POST-QUANTUM密码学;盲侧通道攻击;凯伯;基于晶格的密码学;基于功率的侧通道攻击
动机:成对序列比对仍然是计算生物学和生物启发性的基本问题。基因组学和测序技术的最新进展要求更快,可扩展的算法可以应对不断增加的序列长度。基于动态程序的经典成对比对算法受到时间和记忆的二次需求的强烈限制。最近提出的波前比对算法(WFA)引入了一种有效的算法,以在OðNS的时间内执行精确的差距 - 额度对齐,其中s是最佳分数,n是序列长度。尽管有这些界限,但WFA的OðS2Þ对于基因组尺度比对在计算上是不切实际的,导致需要进一步改进。结果:在本文中,我们介绍了双向WFA算法,即能够计算Oðsmemory中最佳比对的第一个GAP-AFFINE算法,同时保留WFA的时间复杂性OðNSS。结果,这项工作改善了最低的已知内存结合OðnÞ以计算间隙 - 额定对准。实际上,我们的实施不需要超过几百MB的嘈杂的牛津纳米孔技术来读取多达1 MBP,同时保持有竞争力的执行时间。可用性和实施:所有代码均可在https://github.com/smarco/biwfa-paper上公开获取。联系人:santiagomsola@gmail.com补充信息:补充数据可从BioInformatics Online获得。
外延是一个膜沉积过程,其中沉积材料具有与生长基板相同的晶体取向。晶体表面通常以晶体晶格突然终止的悬挂键装饰。这引起了表面上电势的周期性波动,这是ADATOM成核的驱动力。强化学键合发生在底物上悬挂键与外延形成的材料之间的界面上。结果,外延层键与底物紧密,具有高结合能。由于这种紧密的键合,它正在从其宿主底物物理上分离出外延层。但是,出于多种目的,隔离外延层的需求越来越大。与厚度至少为几百微米的刚性晶圆不同,一旦脱离,超薄的外延层就可以使轻质,柔性,可弯曲和弯曲。这些属性对于新兴应用程序至关重要,包括生物电子学,显示和物联网1、2。可以通过堆叠不同属性和功能的超薄薄膜来实现前所未有的性能和多功能性,并从不同的底物中独立生长和去角质3、4。如果在去角质过程中未消耗底物,则可以重复使用。这是有利的,因为底物通常非常昂贵5。已经提出了几种方法,可以将外延层与底物分离,例如化学,机械和激光提升。化学提升使用基板和
重离子碰撞计划的目标是,其质心能量在几 GeV 到几百 GeV 范围内,研究所产生的致密重子介质的性质,特别是它的状态方程 (EoS) 和传输系数。流体动力学方法对于实现这一目标至关重要,因为它可以相对轻松地纳入不同的状态方程。流体动力学方法在高能 √ s NN = 200 GeV 及以上的核 - 核碰撞中的应用非常成功。在那里,人们通常将动力学分为初始状态和后续流体阶段,其中发生初始硬散射,据称会导致介质的各向同性或有效流化,其中演化由流体动力学方程控制。然而,在模拟较低能量的重离子碰撞时,人们面临着一个挑战。入射原子核的洛伦兹收缩并不强,两个原子核完全穿过对方并发生所有初级 NN 散射需要几 fm / c 的时间。在发生第一次核子-核子散射的区域可能已经形成了稠密介质,而最后的核子仍在接近它们第一次相互作用的点。多流体动力学是一种优雅但现象学的方法,可以解释中能级原子核-核碰撞的复杂时空图景。在多流体方法中,人们将入射原子核近似为两个冷且富含重子的团块
2004 年,静电纺丝因其在生物和医学科学中的实用性而被重新构想和研究,即直接将生物聚合物与细胞混合,并将该细胞悬浮液暴露于静电纺丝中。这些研究表明,尽管施加了数千伏的电压,但被静电纺丝的带有生物聚合物的细胞并没有受到从分子水平向上的任何损伤。后来人们发现,伴随的施加电流通常为纳安培。因此,从另一个角度看,在医学和临床科学中,有一种这样的电场驱动方法,即电穿孔,据报道,这种方法的电压为几百伏,电流为几十毫安,会损伤和杀死细胞。电穿孔中的电流是使细胞膜可渗透所必需的,从而使基因构建体能够进入细胞。不幸的是,在此过程中,大多数细胞无法修复其渗漏的膜,因此死亡。这是大多数遗传学家学会忍受的权衡,因此产生了低存活率的转染细胞群。2006 年,直接电纺细胞的能力被创造出来,现在被称为“细胞电纺”。迄今为止,细胞电纺已被探索用于处理 600 多种不同类型的细胞,从原核到真核、哺乳动物和其他细胞类型,包括干细胞和整个受精胚胎。
建立民主并非易事。维持民主也非常困难。当我写下这些文字时,民主的价值既不是抽象的,也不是理所当然的。此时此刻,在几百公里外的欧洲,一个专制国家正在对我们的民主发动战争。历史将揭示正在发生的事情,但我们已经知道,俄罗斯决定攻击和入侵乌克兰,是因为民主给人民带来了自由、社会和经济福祉。因为民主是专制的敌人。它是一股非凡的力量,它带来了革命、推翻了政权,并让数百万人的生活变得更好。今天,我们不可能不看清形势。军事侵略说明了一切。炸弹不是我们的借口。与此同时,我们必须明白,如果我们从现在开始不走正确的道路,我们就会犯错。现在是时候从民主的基本价值出发,再次认识到民主的价值了。如果我们真的想赢得这场战斗并战胜这场战争,我们必须加强我们最好的武器。正是这种力量让我们改善了我们的生活和我们孩子的生活。要做到这一点,我们必须采取行动。我们必须决定明智地花费我们的时间和金钱。当我们购物时,当我们选择时,当我们投票时,我们必须记住这一点。现在是承认、保护和扩大我们民主所基于的权利的时候了。自由权、言论和表达自由
LYNRED 是全球领先的航空航天、国防和商业市场高品质红外技术设计和制造公司。得益于其精通的波长可调 MCT 技术,其丰富的红外探测器产品组合覆盖了从近红外到远红外的整个电磁波谱。此外,MCT 技术的空间辐射抗性使 LYNRED 成为欧洲领先的太空红外探测器制造商。最近与太空探测器市场相关的一个显著趋势是,对多线性/多光谱阵列格式的需求增加(从大约 1000 个光电元件增加到 4000 个光电元件),同时对帧速率的需求也更高(帧时间从 100µs 增加到几百 µs)。然而,这些特性通常与目前太空市场现成的窗口式 2D 大型传感器不兼容,尤其是由于 2D 和线性传感器之间的技术操作点不同。因此,LYNRED 已启动特定的最新开发,以更好地适应未来的推扫式(通常基于多个多线性阵列)或扫帚式(通常基于一个多线性阵列)仪器概念。该产品组合扩展的主要挑战之一是设计一条多线性传感器空间产品线,不仅基于经过太空验证的构建模块传统,而且尽可能基于延迟差异化方法。这种设计方向将能够在较短的时间内最佳地满足最广泛的空间仪器需求。
多部分纠缠的实验检测通常需要许多适当选择的局部量子测量值,这些测量与先前共享的共同参考框架相一致[1,2]。在几百千米的距离上,后者可能是光子自由空间量子通信的具有挑战性的先决条件[3,4],目前正在扩展到涉及围绕地球的卫星的空间[5-8]。在这里,由于相关卫星的运动,距离和数量,共享经典参考框架的问题变得尤其具有挑战性,这使得开发了所需的替代检测策略。近年来,已经有许多实验协议的建议避免了共享经典参考框架的需要。一种可能性是将逻辑Qubits编码为合并的光子自由度的旋转不变子空间,即它们的极化和横向自由度[9,10]。后一个程序为一个完整的实验工具箱提供了用于无对齐的量子通信的完整实验工具箱,但也可以在实验上发现较少要求的策略,以允许参考框架独立的纠缠认证。例如,人们可以使用在局部统一(LU)转换下不变的纠缠标准,通常称为参考框架无关[11-18]。这种类型的纠缠标准要求实验者能够测量一组固定的局部可观察物,但完全避免了需要在各方之间进行测量的需要。