人类的微生物组,尤其是肠道菌群,似乎是负责健康和疾病的人体中最有效的元素。各种草药和香料经常用于烹饪和异常高的生物活性物质,例如多酚,萜烯和Flavo-Noids,因为它们对肠道健康的影响而引起了人们的关注。本研究旨在检查烹饪草药和香料与肠道微生物组之间的联系,并回顾最新的搜索结果。人类微生物群具有可变数量的细菌,其微生物组的组成和特性取决于饮食,生活方式和环境因素。目前的文献表明,香料和草药中的植物化学物质可以修饰肠道菌群,这可能导致炎症较低,更好的消化和预防非传染性疾病。已通过进一步的研究证明,肉桂,姜,姜黄和迷迭香等草药对肠道有益,并且在动物和人类研究中显示出积极的效果。总而言之,在饮食中添加烹饪草药和香料提供了一种直接但有力的手段,可以保留健康的肠道微生物群,并支持整体改善健康。
摘要:通过分析孕妇的年龄、心率、血氧水平、血压和体温,可以评估某些患者的风险复杂性。及早识别和分类风险变量可以减少错误,从而成功预防妊娠相关问题。孕妇风险分析可以改善产前护理,改善母婴健康,并通过使用机器学习算法(例如 LDA、QDA、KNN、决策树、随机森林、Bagging 和支持向量机)识别错误分类的观测值来优化医疗资源,这些算法对孕产妇健康风险评估具有重要影响。应用了分割验证技术,使用 800 个观测值进行训练,使用 214 个观测值进行测试。此外,使用 10 倍交叉验证技术确定了最可靠的模型。所提出的模型在准确性和效率方面优于所有其他模型,使用 10 倍交叉验证技术的支持向量机的准确率为 86.13%。本研究的目的是利用机器学习技术,通过在风险因素分析中采用分类策略来估计孕产妇健康问题的强度水平。
丁香假单胞菌引起的疾病 Reyhaneh Ravanbakhshian-HabibAbadi、Mandana Behbahani*、Hassan Mohabatkar 伊斯法罕大学生物科学与技术学院生物技术系 摘要 丁香假单胞菌是一种革兰氏阴性细菌,可导致多种植物的多种疾病。抑制丁香假单胞菌生长的策略包括保护性措施;然而,由于其传播迅速,控制这种疾病很复杂。若干抗菌剂可以预防这种疾病,如化合物、生物制剂、次生代谢产物、纳米颗粒、噬菌体和抗菌肽 (AMP)。控制这种疾病最有效的方法是化学防治。使用铜化合物和抗生素是减轻溃疡病症状的常规做法。然而,由于化学品和杀菌剂造成的环境污染以及丁香假单胞菌不同致病变种的耐药性,需要其他的细菌病原体控制方法。在体外条件下,使用拮抗细菌的生物防治已显示出对抗丁香假单胞菌的良好效果。新的研究重点是利用植物的次生代谢产物来控制植物疾病。研究表明,当精油被像中孔二氧化硅这样的纳米粒子保护着免于降解和蒸发时,可以提高它们的抗菌活性。使用纳米粒子,尤其是银,是控制丁香假单胞菌的一种合适策略。然而,高浓度的银纳米粒子是有毒的。建议使用噬菌体和 AMP 作为控制农业细菌感染(包括丁香假单胞菌)的替代品。噬菌体和次生代谢产物的联合治疗已显示出更高的功效,有可能克服抗药性。然而,噬菌体和 AMP 价格昂贵且有限。最后,使用低浓度的次生代谢产物和纳米粒子具有经济效益和抗菌活性,而没有植物毒性。关键词:生物制剂;次生代谢产物;纳米粒子;噬菌体;抗菌肽简介 丁香假单胞菌是一种革兰氏阴性微生物,可导致植物发生各种疾病,包括一些水果、谷物和花卉,导致斑点、斑块和枯萎病等疾病 [1, 2]。丁香假单胞菌有两个有组织的生长阶段:附生阶段,此时细菌生活在植物组织的外部部分(通常在地上);内生阶段,此时细菌进入植物组织并接管细胞间质外体空间 [3]。宿主中形成的病变与群体感应控制的毒力因子有关 [4]。
*电子邮件:vasilyev@uta.edu摘要:我们描述了一种新颖的方案,用于在几种模式纤维中生成轨道 - 摩肌 - 输入光子。我们通过两个模式经典信号输入来实验验证基础模式间参数过程,观察到生成的惰轮的高模式纯度。OCIS代码:(190.4380)非线性光学元件,四波混合; (190.4420)非线性光学元件,横向效应; (060.4370)非线性光学元件,纤维; (270.5585)量子信息和处理。使用空间模式(例如,多模纤维和波导的模式)对于增加经典和量子通信的能力很重要。在量子情况下,以多个自由度(例如,在极化,频率,时间键和空间模式)中纠缠,可以实现依赖于高维希尔伯特空间中编码的量子信息的新的通信和网络协议。虽然已经以与光纤低损坏的运输相兼容的整合形式实施了两极分化,频率和时间纠缠,但空间纠缠仍然依赖于基于散装的基于基于晶体的设置,例如,空间或轨道 - 或轨道 - 或轨道 - 角度 - 角色 - (OAM)纠缠式的光子和晶体的晶体序列,并具有晶体式的晶体序列。几个模式纤维(FMF)[2]和涡流纤维[3]。fmf本身一直在基于模式间混合(IM-FWM)的非线性平台作为非线性平台,这是由于FMF的模式和分散工程的广泛选择,以及与低损失变速箱链路中使用的FMF的出色模式匹配。相关的光子对最近是由IM-FWM [4,5]在FMF中产生的,但尚未尝试过空间模式纠缠的尝试。我们最近使用两个IM-FWM过程的组合在FMF中直接在LP 01和LP 11模式中生成空间模式的光子对的新方案[6]。使用经典种子信号,我们实验证明了这两个过程的信号式模式选择性。在本文中,我们展示了如何使用该方案的修改来生成轨道 - 角摩肌键入光子对。
摘要。甲烷排放的现场水平测量值由操作员与自下而上的散布清单进行对帐,以提高所报告排放的准确性,彻底和确定。在这种情况下,至关重要的是避免测量错误并了解测量不确定性。遥远的飞机系统(通常称为“无人机”)可以在现场级甲烷排放的量化中起关键作用。典型的实现使用“质量平衡方法”来量化排放,高精度甲烷传感器以垂直窗帘模式安装在四极管无人机上。然后可以根据测量的甲烷浓度数据和同时的风数据在事后计算总质量排放率。受控释放测试表明,使用质量平衡方法的错误可能是相当大的。例如,Liu等。(2024)报告了测试的两个无人机解决方案的绝对错误超过100%;另一方面,如果在数据上放置了其他约束,则误差可能会小得多,在Corbett和Smith(2022)中的根平方错误的顺序,将分析限制在风场稳定的情况下。在本文中,我们提出了对物理现象的系统误差分析,该分析影响了与甲烷浓度数据获取和后处理有关的参数质量平衡方法中的误差。这些来源的示例包括单独分析了词的来源,并且必须意识到,实践中可以积累单个错误,并且也可以由未包含在本工作中的其他来源增加它们。
摘要:A ffi 体分子是放射性核素分子成像中研究最多的一类工程化骨骼蛋白 (ESP)。使用放射性金属直接标记的 A ffi 体分子进行靶向放射性核素治疗的尝试因肾脏中放射性的高吸收和滞留而受到阻碍。已经实施了几种有希望的策略来规避这个问题。在这里,我们研究了是否可以使用针对重吸收系统不同成分的药理学方法来降低肾脏对 [ 99m Tc]Tc-Z HER:2395 A ffi 体分子的吸收。与对照组相比,预先注射丙磺舒、呋塞米、甘露醇或秋水仙碱对肾脏的放射性吸收没有影响。与对照组相比,预先注射马来酸和果糖的小鼠肾脏相关活性分别降低了 33% 和 51%。放射自显影图像显示,注射 [ 99m Tc]Tc-Z HER2:2395 后活性的积累在肾皮质中,马来酸和果糖均可显著降低活性。本研究结果表明,使用马来酸和果糖进行药物干预可有效减少肾脏对 a 体分子的吸收。一种可能的机制是肾小管细胞破坏了 ATP 介导的细胞吸收和 a 体分子的内吞过程。
抽象背景:结核病或结核病是结核分枝杆菌复合物引起的疾病。感染了结核病或结核病时,有几种合并症患有严重性和死亡,即高血压,糖尿病,心血管疾病,慢性肾脏疾病,脑血管疾病和其他疾病。这项研究旨在估计接受合并症糖尿病治疗的结核病患者的死亡风险,并进行了先前作者进行的基本研究的荟萃分析。受试者和方法:这是一项系统的综述和荟萃分析,与以下PICO:人口:结核病患者。干预:慢性糖尿病的合并症。比较:没有合并症糖尿病。结果:死亡。本研究中使用的文章是从三个数据库中获得的,即Google Scholar,PubMed和Science Direct。搜索文章“结核病”或tbc和“糖尿病”或DM和死亡率或死亡的键 - 包括2007年至2021年的同类研究设计,并报告了调整后的优势比(AOR)。文章选择是通过使用Prisma流程图完成的。使用Review Manager 5.3应用程序分析文章。结果:选择了从美国,欧洲,非洲和亚洲接受治疗的结核病患者进行的12项队列研究,以进行系统的审查和荟萃分析。结论:糖尿病合并症增加了接受治疗的结核病患者死亡的风险。ir。收集的数据显示,与没有合并症的慢性肾脏疾病的Covid-19患者相比,接受合并症糖尿病治疗的结核病患者的死亡风险为1.68倍(AOR = 1.68; 95%CI = 1.42至1.42至1.99; P <0.001)。关键词:糖尿病,结核病,死亡率来信:Hakim Anasulfalah。公共卫生硕士课程,JL塞贝拉斯·马雷特大学。Sutami 36a,Surakarta 57126,Jawa Tengah。电子邮件:anasulfalah75@gmail.com。手机:085602655400。认为这是:Anasulfalah H,Tamtomo DG,Murti B(2022)。糖尿病合并症对接受结核病治疗的结核病患者死亡率风险的影响:一项荟萃分析。J Epidemiol公共卫生。07(04):441-453。 https://doi.org/10.26911/jepublichealth.2022.07.04.03。
目前有几种技术可用于将 RNA 分子与其互补的 DNA 序列退火。对于某些目的,RNA 和 DNA 都可以在溶液中,1'2 但将 DNA 固定在固体或半固体基质中,4 或附着在硝酸纤维素膜过滤器上往往更方便。5 通常在用核糖核酸酶处理以去除未杂交的 RNA 后,通过对放射性 RNA 进行闪烁计数来检测杂交体。RNA 与细胞学制剂中的 DNA 的杂交应表现出高度的空间定位,因为每种 RNA 只与其互补的序列杂交。细胞学杂交技术的一般原理并不难制定。染色体或细胞核应以尽可能逼真的方式固定;碱性蛋白质应被去除,因为它们会干扰杂交过程;5 应以不丢失细胞完整性的方式变性 DNA;杂交应使用具有极高比活度的放射性 RNA,因为在给定位点杂交的分子数很少;检测应通过氚放射自显影实现最大细胞学分辨率。本文介绍了一种适用于传统南瓜制剂的细胞学杂交技术。它以蟾蜍 Xenopus 卵母细胞中 rRNA 与染色体外 rDNA 的杂交为例。1968 年 12 月,在巴西贝洛奥里藏特举行的国际核生理学和分化研讨会上提交了该技术的初步报告。材料和方法。- 细胞学杂交技术结合了琼脂柱4 和过滤方法5 的某些特点。它应该普遍适用于任何可以作为南瓜或涂片检查的材料。制备图 1 中所示的制剂时采用以下步骤。(1)将新近变态的非洲爪蟾的卵巢在乙醇-乙酸(3:1)中固定几分钟。(2)将组织转移到显微镜载玻片上的一滴 45% 乙酸中,
抽象的环境:几种方法,例如抗体药物缀合物(ADC),嵌合抗原受体T细胞(CAR-T)和最近的双特异性抗体,已成功引入了B细胞淋巴瘤治疗中的创新武器。但是,对于罕见的T细胞淋巴瘤和白血病(例如PTCL),五年内的五年生存率在20多年中没有提高,并且迫切需要新的疗法。lis22,是类糖 - 人性化的多克隆抗体(GH-PAB)的第一个,同时针对多种肿瘤相关的抗原。在这项研究中,我们广泛地表征了LIS22在T细胞血液癌的临床前模型中的安全性和功效。材料和方法:LIS22诱导抗体依赖性细胞毒性(ADCC),抗体依赖性细胞吞噬作用(ADCP),补体依赖性细胞毒性(CDC)和凋亡对血液学细胞细胞系和外围血液中的血液学细胞系和凋亡进行了测试。为了评估LIS22in PTCL患者的靶向和识别,我们使用组织微阵列(TMA)评估了LIS22对患者活检(n = 119)的免疫标记。LIS22的疗效。在单鼠猴子中评估了该药物的药代动力学和安全性,并重复发给50mg/kg。结果:LIS22通过几种机制起作用,以30µg/ml的速度起作用,它通过CDC(以70%),ADCP(以49%)的形式诱导细胞毒性,ADCC(分别为41%)(41%)和凋亡(分别为30%)HPB-All Human T血液癌细胞系,但在PBMC中不进行。它能够杀死多达100%的癌细胞而不会影响PBMC。lis22在血液学恶性细胞系中表现出有效的体外抗肿瘤活性,它诱导了特定的肿瘤细胞CDC(EC50 = 41.4±28.9Ug/ml)。均显示出对T细胞血液癌的效力明显更高,对健康血细胞的毒性没有毒性。在免疫标记测定中,对PTCL患者活检(染色高达93%)的LIS22示例性反应。