摘要:通过分析孕妇的年龄、心率、血氧水平、血压和体温,可以评估某些患者的风险复杂性。及早识别和分类风险变量可以减少错误,从而成功预防妊娠相关问题。孕妇风险分析可以改善产前护理,改善母婴健康,并通过使用机器学习算法(例如 LDA、QDA、KNN、决策树、随机森林、Bagging 和支持向量机)识别错误分类的观测值来优化医疗资源,这些算法对孕产妇健康风险评估具有重要影响。应用了分割验证技术,使用 800 个观测值进行训练,使用 214 个观测值进行测试。此外,使用 10 倍交叉验证技术确定了最可靠的模型。所提出的模型在准确性和效率方面优于所有其他模型,使用 10 倍交叉验证技术的支持向量机的准确率为 86.13%。本研究的目的是利用机器学习技术,通过在风险因素分析中采用分类策略来估计孕产妇健康问题的强度水平。
主要关键词