激光发明于 1963 年,此后不久,激光诱导击穿光谱法也得到了发展。1 许多现代分析技术都是以原子光谱为基础来实现典型的汽化和激发。激光诱导击穿光谱 (LIBS) 就是其中之一。元素分析是通过使用快速分析技术即激光诱导击穿光谱 (LIBS) 完成的,该技术已广泛应用于各种工业应用。LIBS 使用由分析仪产生的高能辐射短脉冲。2 LIBS 具有多种优势,例如无化学技术、便携性、空间信息和快速检测。3 但其相对较低的测量重复性是 LIBS 技术的主要缺点。4 LIBS 也称为原子发射光谱法。当原子处于高能态时,它们会从低能级被激发到高能级。5 LIBS 也是一种直接且用途广泛的激光诱导等离子体光谱技术,可分析光谱发射。 6 LIBS 能够同时进行多种物种测量,因此它是一种发射技术。 7 LIBS 也称为激光火花光谱 (LSS) 和激光诱导等离子体光谱 (LIPS)。通过监测发射信号
新沉积的介电材料的质量控制是 nanoTDDB 使用的另一个例子。具体来说,当使用原子层沉积 (ALD) 制备薄氧化膜时,需要对该过程进行微调以产生可重复的结果。这里用 ALD 制备二氧化硅膜,并用椭圆偏振法测量其厚度。由于在晶圆的不同位置观察到一些膜厚度变化,因此使用 Jupiter XR AFM 进行 nanoTDDB 测量以测量膜的电性能。使用 AFM 软件中编程的自动程序在晶圆的各个位置进行测量。
a 捷克科学院 J. Heyrovský 物理化学研究所,Dolej ˇ skova 3, CZ 18223,布拉格 8,捷克共和国 b 安特卫普大学,理学院,Groenenborgerlaan 171,BE-2020 安特卫普,比利时 c 布拉格捷克技术大学,核科学与物理工程学院,B ˇ rehov ´ a 78/7,11519,布拉格 1,捷克共和国 d 中欧技术研究所,布尔诺理工大学,Purky ˇ nova 656/123,CZ-61200,布尔诺,捷克共和国 e 物理工程研究所,机械工程学院,布尔诺理工大学,Technick ´ a 2,CZ-61669,布尔诺,捷克共和国 f 德国航空航天中心 (DLR) 光学传感器系统研究所,DE-12489,柏林,德国 g BAM 联邦材料研究与测试 Richard-Willstaetter-Strasse 11, 12489, Berlin, Germany h Lightigo Space sro, Rennesk ´ at ˇ rída 329/13, CZ-63900, Brno, Czech Republic
研究了相位像差及其对激光诱导击穿引起的流场发展的影响。使用可变形镜将相位像差施加到波长为 1064nm 的高能激光脉冲上。设计了一个实验装置来捕捉激光诱导击穿引起的流场运动,该装置着重于捕捉流场的横向轮廓和同轴轮廓。结果显示,由于非平面相的存在,火花吸收的激光脉冲能量 (181mJ) 显著降低,这是由于在通常发生击穿的焦平面中扩散所致。在收集的数据中,研究了 Zernike 0 ◦ 散光、Zernike Y-彗形像差和 Zernike 球面像差的单个实例。著名的 Horn-Schunck 光流法用于分析阴影图像,产生运动的密集光流场表示。结果表明,所研究的每种像差都会产生独特的流场,显示出超特定局部流规范的潜力,并进一步讨论了其含义。
1 简介 激光诱导击穿光谱 (LIBS) 可确定目标样品中存在的原子元素。使用激光脉冲蒸发目标的小样本(通常小于一微克),以产生电离原子和自由电子的等离子体。当该等离子体冷却并且自由电子与离子重新结合时,会发射出各种谱线。这些谱线的波长和强度可识别原始目标中的原子元素。此外,还可以推断出目标中存在的这些元素的百分比。通过计算机分析发射的谱线,可以在几分之一秒内完成测量。几乎不需要或根本不需要样品制备。目标可以是任何吸收所选激光波长的材料:固体、液体或气体。LIBS 被认为源于 Brech 和 Cross 的论文。1 LIBS 发展到目前的状态现已得到充分证明。2 – 4 这种简单、快速且多功能的技术广泛应用于实验室和现场现场测量。后者受到激光和光谱仪技术的进步的推动,这些进步带来了紧凑、便携的 LIBS 系统。5 – 7 LIBS 的应用现在涵盖了物理和生命科学的许多领域, 8 – 12 从深海测量 13、14 到火星。15 该技术可归为微破坏性技术(许多应用认为它是非破坏性的),其应用甚至扩展到珍贵艺术品,用于鉴定古代绘画作品和珍宝中的颜料,例如检查古钱币以确定其年代和真实性。16 – 19
摘要 人们普遍提出添加纳米填料作为增强高压聚合物绝缘材料介电性能的方法,尽管文献中对此的报道褒贬不一。本文确定了二氧化硅纳米粒子延长失效时间的潜力,特别是通过抵抗环氧树脂中的电树枝生长。在混合之前用硅烷处理纳米粒子的好处很明显,可以减缓树枝生长并缩短失效时间。在实验室中测量了针状平面样品中树枝的生长情况,其中纳米填料的含量分别为 1、3 和 5 wt%。在所有情况下,平均失效时间都会延长,但在混合之前对纳米粒子进行硅烷处理可获得更好的效果。在填充量较高的硅烷处理情况下,树枝生长前会出现明显的起始时间。用硅烷处理的 5 wt% 填充材料的平均失效时间是未填充树脂的 28 倍。含有未处理和处理过的填料的纳米复合材料性能的提高归因于处理过的填料团聚物减少和分散性提高。局部放电 (PD) 测量表明,在处理过和未处理过的情况下,树木生长过程中的 PD 模式存在显著差异。这种区别可能为监测材料提供一种质量控制方法。特别是,在硅烷处理的情况下,观察到长时间未测量 PD。对未填充材料中的树木生长进行视觉成像,可以观察到树木在生长过程中从细树到深色树的变化性质。相应的 PD 测量表明深色树逐渐变得导电,并且测得的最大 PD 的增长取决于树木生长和碳化的相对速率。
集成串行译码电路 集成 8 高效 PMOS 输出 , 导通电阻 100mΩ 集成内部防烧功率管 动态消影技术 反向击穿保护 支持最大持续电流 2.5A 低功耗设计 消影电位 8 档可调 封装形式: SOP16 广泛应用领域: LED 显示屏、 LED 照明、 LED 景观亮化
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
摘要:本研究从金属栅极面积、介电薄膜几何形状和厚度效应等方面研究了低介电常数 (low- k ) 材料的金属-绝缘体-半导体 (MIS) 电容器结构的可靠性特性。研究使用了两种低 k 材料,即致密和多孔低 k 薄膜。实验结果表明,与致密低 k 薄膜相比,多孔低 k 薄膜的击穿时间更短、威布尔斜率参数和电场加速因子更低、厚度依赖性击穿更弱。此外,还观察到介电击穿投影模型的偏差较大,且各个区域合并的击穿时间分布呈现单个威布尔图。研究还指出,不规则形状的金属栅极 MIS 电容器中多孔低 k 薄膜的介电击穿时间比方形和圆形样品中更长,这与持续电场的趋势相悖。因此,不规则形状的样品中存在另一种击穿机制,需要在未来的工作中进行探索。
摘要 — 商用碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的栅极氧化物可靠性对其应用至关重要。恒压时间相关电介质击穿 (TDDB) 测量通常用于评估正常运行下 SiC 功率 MOSFET 的电介质故障时间。最近提出了一种基于氧化物隧穿电流行为的电荷击穿方法来预测电介质故障时间。该方法耗时较少,但要求器件的氧化物漏电流行为遵循通用包络线。这项工作比较了电荷击穿方法和恒压 TDDB 方法对商用 1.2 kV SiC MOSFET 的预测故障时间。结果表明,在低氧化场 (E ox < 9 MV / cm ) 下应用的恒压 TDDB 方法对器件寿命的预测最为保守。